Name of Exp.: The forearm as a lever

The Aim: -----

Theory

The forearm can be considered as a simple lever, actually a **third-class lever**. The pivot (or **fulcrum**) is at the elbow joint, the load is held in the palm of the hand and the **effort** is applied in the **biceps muscle**. In the arrangement shown in the figures, the forearm is horizontal and the force in the biceps muscle acts vertically. The system is in equilibrium for which:

 $\Sigma F_i = 0$ (where F_i are the forces)

 $\Sigma \tau_i = 0$ (where τ_i are torques about any given point)

In Fig.(1),

 $a_{\rm e}$ is the arm of the effort (F),

 $a_{\rm m}$ is the arm of the weight of the forearm (mg),

 a_l is the arm of the load (W),

F is the force the biceps muscle exerts to hold the forearm (mg) and its load (W),

R is the resistance force at the pivot 0 (fulcrum).

The forces in Fig.(1) form a system of parallel forces where,

 $F = W + mg + R \tag{1}$

From the diagram and taking torques about the fulcrum (point 0):

Anticlockwise torque: $\tau_{acloc} = effort \times a_e = F \times a_e$

Clockwise torques: $\tau_{cloc} = mg \times a_m + W \times a_l$

With the arm being at equilibrium, we have:

$$\tau_{\rm acloc} = \tau_{\rm cloc}$$

Thus, the effort in biceps muscle to support the forearm and the load W in the hand is:

$$F = \frac{mga_m + Wa_l}{a_e} \tag{2}$$

The mechanical advantage (M.A.) is defined as:

$$M.A = \frac{Output \ Force}{Input \ Force} \tag{3}$$

$$M.A = \frac{Input \ arm \ force}{Output \ arm \ force} \tag{4}$$

Fig.(2) Experiment setup.

Procedure

- **1.** For a fixed a_l , change W and measure the effort *F* that makes the lever horizontal. Record as in **Table 1**. Plot a graph of *F* against W. Plot a graph of M.A. (Eq.3) against W.
- **2.** For a fixed W, change a_l and measure the effort *F* that makes the lever horizontal. Record as in **Table 2**. Plot a graph of *F* against a_l . Plot a graph of M.A. (Eq.4) against a_l .

3. Discuss your results.

 $a_{\rm e} = \dots \dots m, \qquad a_{\rm m} = \dots m,$

Table 1Constant Load's Arm (a_l)

$a_l = \ldots \ldots m$				
Load	Load	Effort Force,	M.A.	
W (gm)	VV (N)	<i>F</i> (N)	Eq.(3)	

	Table 2 Constant Load (W)					
W = gm = N						
	Load distance $a_l \times 10^{-3}$ (m)	Effort Force, F (N)	M.A. Eq.(4)			

Questions

- 1. What is the effort? Ans.:
- **2.** Consider the human forearm as a lever with the elbow as the fulcrum. When a body of given weight is held in the hand, the force exerted by the muscles on the arm is:

(a) less than the weight. (b) the same as the weight. (c) greater than the weight.

- 3. Define the third-class lever. Ans.:
- 4. Define the first-class lever. Ans.:
- **5.** Define the second-class lever. **Ans.**:
- 6. What are the advantage(s) of third class levers? Ans.:
- 7. Define the mechanical advantage of a third-class lever. Ans.:
- 8. What are the sources of error? How can you reduce them? Explain.