

These lecture notes give a very short introduction to polynomials with real coefficients.

Monomial: A number, a variable or the product of a number and one or more variables.

<u>Polynomial:</u> A monomial or a sum of monomials.

Binomial: A polynomial with exactly two terms.

<u>Trinomial:</u> A polynomial with exactly three terms.

<u>Coefficient:</u> A numerical factor in a term of an algebraic expression.

<u>Degree of a monomial</u>: The sum of the exponents of all of the variables in the monomial.

<u>Degree of a polynomial in one variable</u>: The largest exponent of that variable.

<u>Standard form:</u> When the terms of a polynomial are arranged from the largest exponent to the smallest exponent in decreasing order.

What is the degree of the monomial?

$$5x^4b^2$$

The degree of a monomial is the sum of the exponents of the variables in the monomial.

- The exponents of each variable are 4 and 2. 4+2 = 6.
 - The degree of the monomial is 6.
 - The monomial can be referred to as a sixth degree monomial.

A polynomial is a monomial or the sum of monomials

$4x^2$ $3x^3-8$ $5x^2+2x-14$

Each monomial in a polynomial is a term of the polynomial.

The number factor of a term is called the coefficient.

The coefficient of the first term in a polynomial is the *lead coefficient*.

- A polynomial with two terms is called a *binomial.*
- A polynomial with three terms is called a *trinomial.*

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0,$$

where a_0, a_1, \ldots, a_n are real numbers and $n \ge 1$ is a natural number. The domain of a polynomial function is $(-\infty, \infty)$.

The Degree of a Term with one variable is the exponent on the variable.

$$5x^2 \Rightarrow 2$$
, $2x^4 \Rightarrow 4$, $-9m \Rightarrow 1$

The Degree of a Term with more than one variable is the sum of the exponents on the variables.

$$-7x^2y \Rightarrow 3$$
, $2x^4y^2 \Rightarrow 6$, $-9mn^5z^4 \Rightarrow 10$

The Degree of a *Polynomial* is the greatest degree of the terms of the polynomial variables.

$$2x^3 - 3x + 7 \Rightarrow 3$$
, $2x^4y^2 + 5x^2y^3 - 6x \Rightarrow 6$

The degree of a polynomial in one variable is the largest exponent of that variable.

2 A constant has no variable. It is a 0 degree polynomial.

 $4\chi + 1$ This is a 1st degree polynomial. 1st degree polynomials are *linear*.

 $5x^2 + 2x - 14$ This is a 2nd degree polynomial. 2nd degree y degree polynomial. 2nd degree

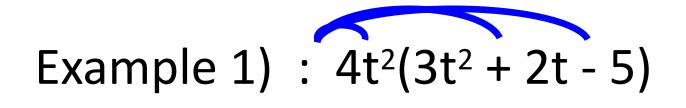
 $3x^3 - 8$ This is a 3rd degree polynomial. 3rd degree polynomials are *cubic.*

Classify the polynomials by degree and number of terms.

	Polynomial	Degree	Classify by degree	Classify by number of terms
a.	5	Zero	Constant	Monomial
b.	2x-4	First	Linear	Binomial
с.	$3x^2 + x$	Second	Quadratic	Binomial
d.	$x^3 - 4x^2 + 1$	Third	Cubic	Trinomial

Operations on polynomial

1-Multiplying Two Polynomials



 $12t^4 + 8t^3 - 20t^2$

- 4m³(-3m - 6n + 4p) 2)

 $12m^4 + 24m^3n - 16m^3p$

Examples:

$$(x+5)(x^{2}+10x-3) = x^{3}+10x^{2}-3x+5x^{2}+50x-15$$
$$x^{3}+15x^{2}+47x-15$$

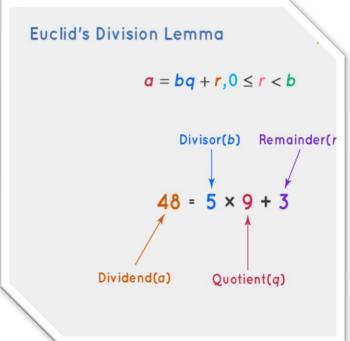
$$(4x^{2} + x + 5)(3x - 4) =$$

$$12x^{3} - 16x^{2} + 3x^{2} - 4x + 15x - 20 =$$

$$12x^{3} - 13x^{2} + 11x - 20$$

2-The Division polynomials by polynomial

Euclid's division lemma states that for any two positive integers, say 'a' and 'b', the condition 'a = bq +r', where $0 \le r < b$ always holds true. Mathematically, we can express this as 'Dividend = (Divisor × Quotient) + Remainder'. A lemma is a statement that is already proved. Euclid, a Greek mathematician, devised Euclid's division lemma.

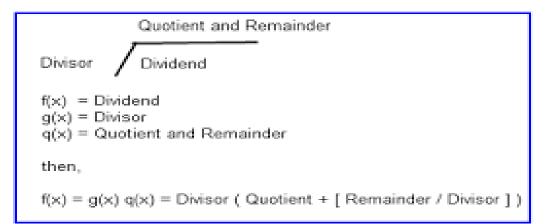


2-The Division polynomials by polynomial

If f(x) and g(x) are polynomials such that $g(x) \neq 0$, and the degree of g(x) is less than or equal to the degree of f(x), there exists a unique polynomials q(x) and r(x) such that

$$f(x) = g(x)q(x) + r(x)$$

Where r(x) = 0 or the degree of r(x) is less than the degree of g(x).



Long Division.

use long division to divide polynomials by other polynomials x + 5

$$x+3)x^2+8x+15$$
$$-x^2-3x$$

$$(x+3)(x+5) = x^{2} + 5x + 3x + 15$$
$$= x^{2} + 8x + 15$$

$$5x + 15$$

$$-5x - 15$$

$$0$$

$$x^{2} + 2x + 6$$

$$x - 1)x^{3} + x^{2} + 4x - 6$$

$$-x^{3} + x^{2}$$

$$0 + 2x^{2} + 4x$$

$$-2x^{2} + 2x$$

$$-0 + 6x - 6$$

$$-6x + 6$$

$$0$$
1. x goes into x³?
2. Multiply (x-1) by x².
3. Change sign, Add.
4. Bring down 4x.
5. x goes into 2x²?
2:
6. Multiply (x-1) by 2x.
7. Change sign, Add
8. Bring down -6.
9. x goes into 6x?
10. Multiply (x-1) by 6.
11. Change sign, Add.
11. Change sign, Add.

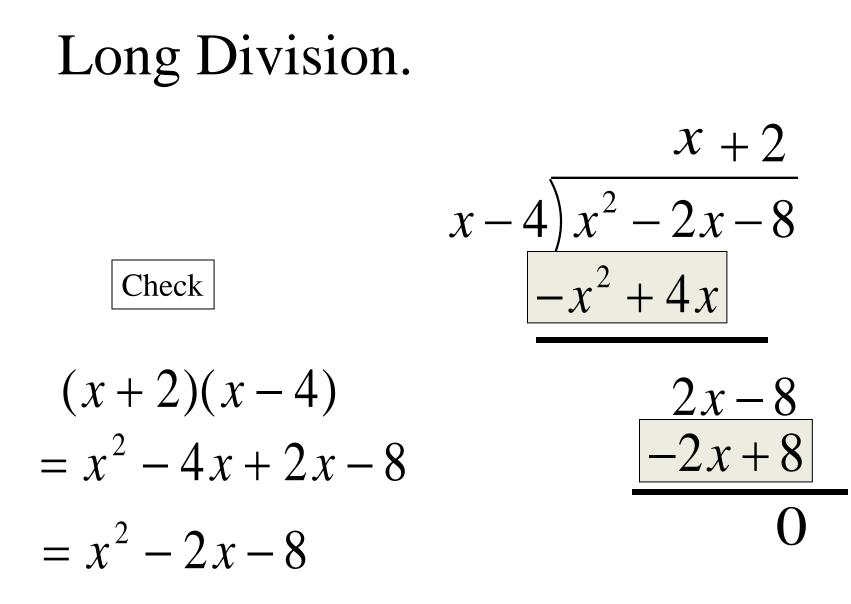
x² times.

2x times.

6 times.

$x^{2} + 3x + 9$ Divide. $(x-3)x^3 + 0x^2 + 0x - 27$ $-x^{3}+3x^{2}$ $x^3 - 27$ $3x^2 + 0x$ x - 3 $-3x^{2}+9x$ 9x - 27 $(x-3)x^3-27$ -9x + 27

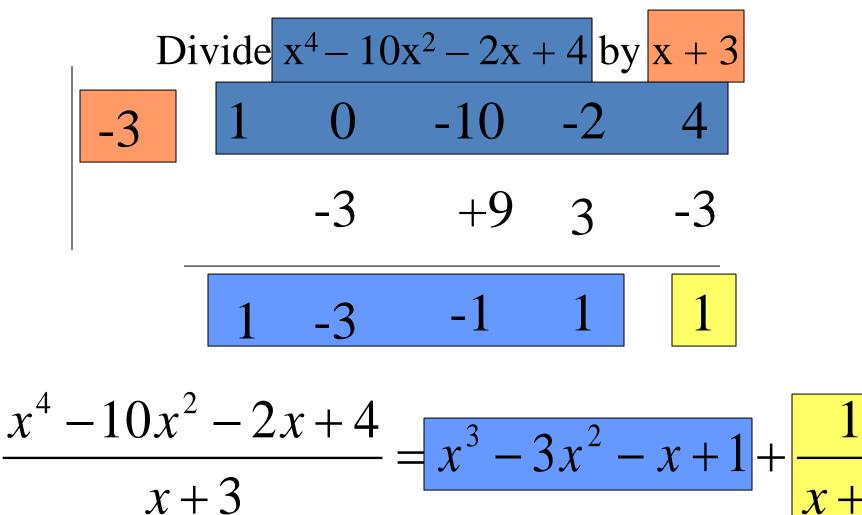
0



• How to use the Remainder Theorem and the Factor Theorem

Synthetic Division

is a shorthand, or shortcut, method of polynomial division in the special case of dividing by a degree one polynomial -and it only works in this case.



<u>SYNTHETIC DIVISION:</u> $(5x^3 - 13x^2 + 10x - 8) \div (x - 2)$

<u>STEP #1</u>: Write the Polynomial in DESCENDING ORDER by degree and write any ZERO coefficients for missing degree terms in order

Polynomial Descending Order: $5x^3 - 13x^2 + 10x - 8$ <u>STEP #2</u>: Solve the Binomial Divisor = Zero

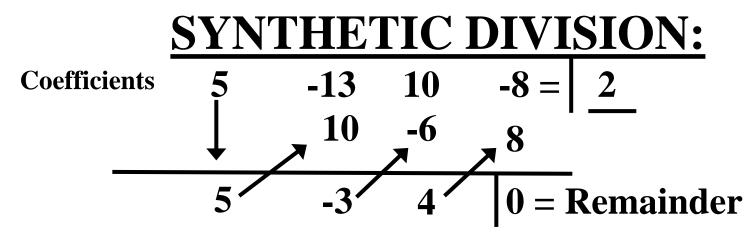
$$x - 2 = 0; x = 2$$

<u>STEP #3</u>: Write the ZERO-value, then all the COEFFICIENTS of Polynomial.

Coefficients 5 -13 10 -8 = | Zero = 2

STEP #4 (Repeat):

(1) ADD Down, (2) MULTIPLY, (3) Product \rightarrow Next Column



STEP #5: Last Answer is your REMAINDER

STEP #6: POLYNOMIAL DIVISION QUOTIENT Write the coefficient "answers" in descending order starting with a Degree ONE LESS THAN Original Degree and include NONZERO REMAINDER OVER DIVISOR at end

(If zero is fraction, then divide coefficients by denominator) $5 -3 4 \rightarrow 5x^2 - 3x + 4$

$$(5x^3 - 13x^2 + 10x - 8) \div (x - 2) = 5x^2 - 3x + 4$$

SYNTHETIC DIVISION: Practice

[1] $(3x^5-7x^4-4x^2-2x-6)(x-3)^{-1}$

$$3x^4 + 2x^3 + 6x^2 + 14x + 40 + \frac{114}{x - 3}$$

[2]
$$(8x^4 - 4x^2 + x + 4) \div (2x + 1)$$

$$4x^3 - 2x^2 - x + 1 + \frac{3}{2x + 1}$$

 $[3]x^{4} - 5x^{3} - 13x^{2} + 10) \div (x+1)$

 $[4](x^3 + 2x^2 - 5x + 12) \div (x + 4)$

REMAINDER THEOREM

The remainder theorem says that if we divide a polynomial f(x) by x-a, the remainder is given by f(a)

Proof of the Remainder theorem

Let f(x) be a polynomial that is divided by x - a

The quotient is another polynomial and the remainder is a constant.

We can write $\frac{f(x)}{x-a} \equiv g(x) + \frac{R}{x-a}$ Multiplying by x - a gives $f(x) \equiv (x-a)g(x) + R$ So, f(a) = (a-a)g(a) + R= R

$$f(x) = 6x^4 - x^3 + 2x^2 - 7x + 2$$
$$g(x) = 2x + 3$$

$$q(x) = 3x^3 - 5x^2 + 17/2 x - 65/4$$

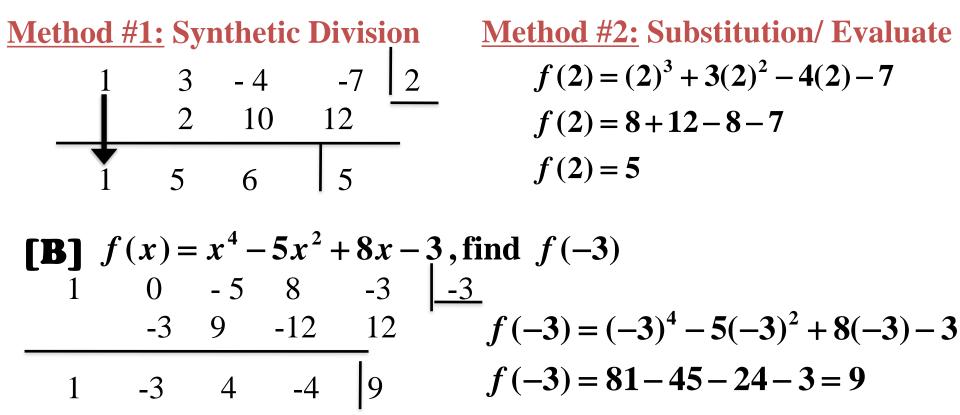
r = 203/4

$$f(x) = \left(-\frac{3}{2}\right) = 6\left(-\frac{3}{2}\right)^4 - \left(-\frac{3}{2}\right)^3 + 2\left(-\frac{3}{2}\right)^2 - 7\left(-\frac{3}{2}\right) + 2$$
$$= 6\left(\frac{81}{16}\right) + \frac{27}{8} + 2\left(\frac{9}{4}\right) + \frac{21}{2} + 2$$
$$= \frac{243}{8} + \frac{27}{8} + \frac{9}{2} + \frac{21}{2} + 2$$
$$= \frac{270}{8} + \frac{30}{8} + 2$$
$$= \frac{270 + 120 + 16}{8}$$
$$= \frac{406}{8}$$
$$= \frac{203}{4}$$

$$3x^{2} - 3x^{2} + \frac{2}{2}x - \frac{4}{4}$$

$$2x + 3 = 6x^{4} - x^{3} + 2x^{2} - 7x + 2 + \frac{6x^{4} + 9x^{3}}{-10x^{3} + 2x^{2} - 7x + 2} + \frac{-10x^{3} - 15x^{2}}{-10x^{3} - 15x^{2}} + \frac{17x^{2} - 7x + 2}{+17x^{2} + \frac{51}{2}x} - \frac{-\frac{65}{2}x + 2}{-\frac{-\frac{65}{2}x + 2}{+17x^{2} + \frac{-\frac{195}{4}}{-\frac{-\frac{65}{2}x - \frac{195}{4}}{+\frac{-\frac{203}{4}}{-\frac{63}{4}}}}$$

Given a polynomial function f(x): then f(a) equals the remainder of **Example:** Find the given value $f(x) = x^3 + 3x^2 - 4x - 7$, find f(2)



Ex:Find the remainder when $x^3 + 3x^2 - 4x + 1$ is divided by x-2

Solution: Let $f(x) = x^3 + 3x^2 - 4x + 1$

So,
$$a=2 \implies R=f(2)$$

$$f(2) = (2)^{3} + 3(2)^{2} - 4(2) + 1$$

= 8+12-8+1
 $\Rightarrow R = 13$

The Factor Theorem: When f(a)=0 then x-a is a factor of f(x) or When x-a is a factor of f(x) then f(a)=0

FACTOR THEOREM:

(x - a) is a factor of f(x) iff f(a) = 0remainder = 0

Example: Factor a Polynomial with Factor Theorem

Given a polynomial and one of its factors, find the remaining factors using synthetic division.

Polynomial:
$$x^{3} + 3x^{2} - 36x - 108$$
; Factor = $(x + 3)$
 $1 \quad 3 \quad -36 \quad -108$
 $-3 \quad 0 \quad 108$
 $1 \quad 0 \quad -36 \quad 0 \quad = x^{2} - 36$
(Synthetic Division) (x + 6) (x - 6) Remaining factors

Therefore $x^3 + 3x^2 - 36x - 108 = (x+3)(x+6)(x-6)$

Example 1: Find ZEROS/ROOTS of a Polynomial by FACTORING: (1) Factor by Grouping (2) U-Substitution (3) Difference of Squares, Difference of Cubes, Sum of Cubes

[A]
$$f(x) = x^3 + 2x^2 + 4x + 8$$
 [B] $f(x) = x^3 - 3x^2 + 9x - 27$

Factor by Grouping = $x^{2}(x+2) + 4(x+2)$ $0 = (x^{2}+4)(x+2)$ $x = \{\pm 2i, -2\}$

Factor by Grouping $= x^{2}(x-3) + 9(x-3)$ $0 = (x^{2}+9)(x-3)$ $x = \{\pm 3i, 3\}$

$$\begin{array}{ll} \textbf{[C]} & f(x) = x^4 - 16 & \textbf{[D]} & f(x) = x^3 - 27 \\ & = (x^2 + 4)(x^2 - 4) & = (x - 3)(x^2 + 3x + 9) \\ & = (x^2 + 4)(x + 2)(x - 2) & \\ & \frac{\{\pm 2i, \pm 2\}} & & \begin{cases} 3, \frac{-3 \pm 3i\sqrt{3}}{2} \end{cases} \end{cases} \end{array}$$

Some facts :-

1-If r is a zero of P(x) then x - r will be a factor of p(x).

2-If x - r is a factor of P(x) then r will be a zero of P(x).

3-If P(x) is a polynomial of degree n and r is a zero of P(x) then P(x) can be written in the following form.

P(x) = (x - r)q(x), where q(x) is a polynomial with degree n-1. q(x) can be found by dividing p(x)by x - r

C. Solving a Polynomial Equation

Rearrange the terms to have zero on one side: $x^{2} + 2x = 15 \implies x^{2} + 2x - 15 = 0$ Factor: (x+5)(x-3) = 0Set each factor equal to zero and solve: (x+5) = 0 and (x-3) = 0

$$x = -5$$
 $x = 3$

The only way that $x^2 + 2x - 15$ can = 0 is if x = -5 or x = 3

D. Factors, Roots, Zeros

For our *Polynomial Function*:

$$y = x^2 + 2x - 15$$

The <u>Factors</u> are:(x + 5) & (x - 3)The <u>Roots/Solutions</u> are:x = -5 and 3The <u>Zeros</u> are at:(-5, 0) and (3, 0)

E. Graph of a Polynomial Function



The <u>Zeros</u> of the Polynomial are the values of xwhen the polynomial equals zero. In other words, the <u>Zeros</u> are the x-values where <u>y equals zero</u>.

These are also the roots and the x-intercepts.

II. Finding Roots A. Fundamental Theorem of Algebra Every Polynomial Equation with a degree higher than zero has at least one root in the

set of <u>complex number</u>

Note: If P(x) is a polynomial of degree *n* then P(x) will have exactly n zeroes, some of which may repeat.

Linear Factorization Theorem

If f(x) is a polynomial of degree n, where n > 0, then f has precisely n linear factors

$$f(x) = a_n(x - c_1)(x - c_2) \cdot \cdot \cdot (x - c_n)$$

where c_1, c_2, \ldots, c_n are complex numbers.

The Rational Zero Test

If the polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0$ has *integer* coefficients, every rational zero of *f* has the form

Rational zero = $\frac{p}{q}$

where p and q have no common factors other than 1, and

p = a factor of the constant term a_0

q = a factor of the leading coefficient a_n .

Possible rational zeros = $\frac{\text{factors of constant term}}{\text{factors of leading coefficient}}$

Example 1: List all possible rational zeros given by the Rational Zeros Theorem of $P(x) = 6x^4 + 7x^3 - 4$ (but don't check to see which actually are zeros).

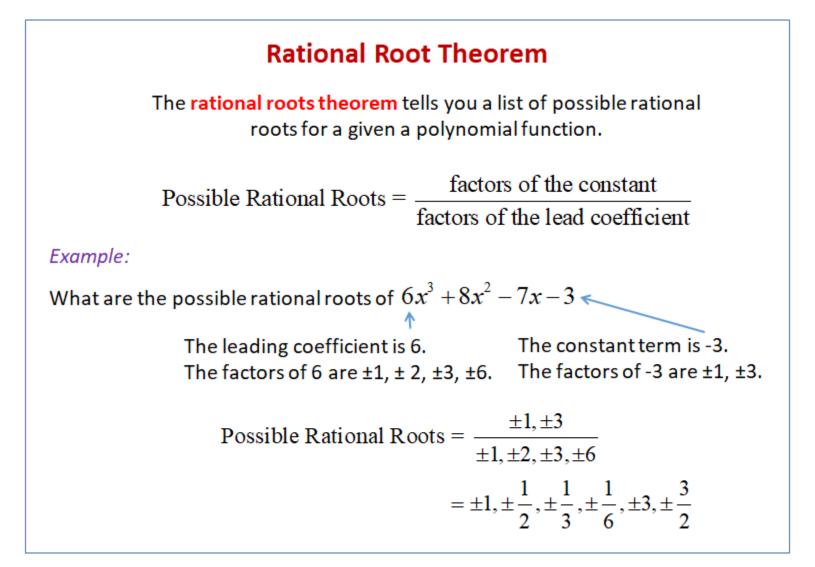
Solution:

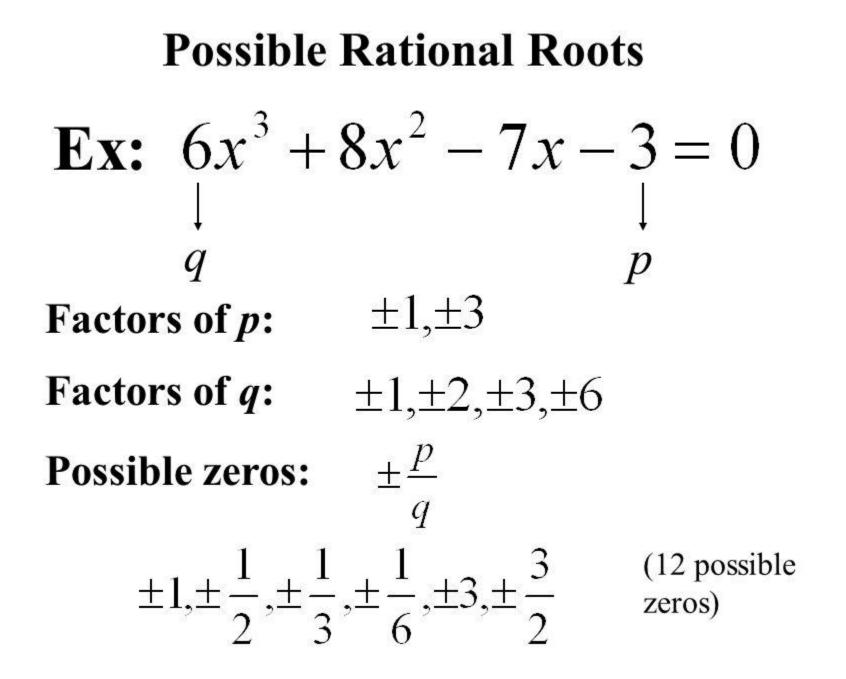
- **Step 1:** First we find all possible values of *p*, which are all the factors of $a_0 = 4$. Thus, *p* can be $\pm 1, \pm 2$, or ± 4 .
- **Step 2:** Next we find all possible values of q, which are all the factors of $a_n = 6$. Thus, q can be $\pm 1, \pm 2, \pm 3$, or ± 6 .
- **Step 3:** Now we find the possible values of $\frac{p}{q}$ by making combinations of the values we found in Step 1 and Step 2. Thus, $\frac{p}{q}$ will be of the form $\frac{\text{factors of 4}}{\text{factors of 6}}$. The possible $\frac{p}{q}$ are

$$\pm \frac{1}{1}, \ \pm \frac{2}{1}, \ \pm \frac{4}{1}, \ \pm \frac{1}{2}, \ \pm \frac{2}{2}, \ \pm \frac{4}{2}, \ \pm \frac{1}{3}, \ \pm \frac{2}{3}, \ \pm \frac{4}{3}, \ \pm \frac{1}{6}, \ \pm \frac{2}{6}, \pm \frac{4}{6}$$

Step 4: Finally, by simplifying the fractions and eliminating duplicates, we get the following list of possible values for $\frac{p}{q}$.

$$\pm 1, \pm 2, \pm 4, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{4}{3}, \pm \frac{1}{6}$$





Find the rational zeros of $f(x) = x^4 - x^3 + x^2 - 3x - 6$.

Solution

Because the leading coefficient is 1, the possible rational zeros are the factors of the constant term.

Possible rational zeros: $\pm 1, \pm 2, \pm 3, \pm 6$

By applying synthetic division successively, you can determine that x = -1 and x = 2 are the only two rational zeros.

So, f(x) factors as

$$f(x) = (x + 1)(x - 2)(x^2 + 3).$$

Because the factor $(x^2 + 3)$ produces no real zeros, x = -1 and x = 2 are the only *real* zeros of *f*, Find the rational zeros of $f(x) = 2x^3 + 3x^2 - 8x + 3$. Solution

The leading coefficient is 2 and the constant term is 3.

Possible rational zeros:
$$\frac{\text{Factors of } 3}{\text{Factors of } 2} = \frac{\pm 1, \pm 3}{\pm 1, \pm 2} = \pm 1, \pm 3, \pm \frac{1}{2}, \pm \frac{3}{2}$$

By synthetic division, you can determine that x = 1 is a rational zero.

So, f(x) factors as

$$f(x) = (x - 1)(2x^2 + 5x - 3)$$
$$= (x - 1)(2x - 1)(x + 3)$$

and you can conclude that the rational zeros of f are x = 1, $x = \frac{1}{2}$, and x = -3.

Complex Zeros Occur in Conjugate Pairs

Let f(x) be a polynomial function that has *real coefficients*. If a + bi, where $b \neq 0$, is a zero of the function, the conjugate a - bi is also a zero of the function.

Find a fourth-degree polynomial function with real coefficients that has -1, -1, and 3i as zeros.

Solution

Because 3i is a zero *and* the polynomial is stated to have real coefficients, you know that the conjugate -3i must also be a zero. So, from the Linear Factorization Theorem, f(x) can be written as

$$f(x) = a(x + 1)(x + 1)(x - 3i)(x + 3i).$$

For simplicity, let a = 1 to obtain

$$f(x) = (x^2 + 2x + 1)(x^2 + 9)$$

= x⁴ + 2x³ + 10x² + 18x + 9.

Find all the zeros of $f(x) = x^4 - 3x^3 + 6x^2 + 2x - 60$ given that 1 + 3i is a zero of f.

Because complex zeros occur in conjugate pairs, you know that 1 - 3i is also a zero of f. This means that both

$$[x - (1 + 3i)]$$
 and $[x - (1 - 3i)]$

are factors of f. Multiplying these two factors produces

$$[x - (1 + 3i)][x - (1 - 3i)] = [(x - 1) - 3i][(x - 1) + 3i]$$
$$= (x - 1)^2 - 9i^2$$
$$= x^2 - 2x + 10.$$

Using long division, you can divide $x^2 - 2x + 10$ into f to obtain the following.

So, you have

$$f(x) = (x^2 - 2x + 10)(x^2 - x - 6)$$

= (x² - 2x + 10)(x - 3)(x + 2)

and you can conclude that the zeros of f are x = 1 + 3i, x = 1 - 3i, x = 3, and x = -2.

Write $f(x) = x^5 + x^3 + 2x^2 - 12x + 8$ as the product of linear factors, and list all of its zeros.

Solution

The possible rational zeros are $\pm 1, \pm 2, \pm 4$, and ± 8 . Synthetic division produces the following.

So, you have

$$f(x) = x^5 + x^3 + 2x^2 - 12x + 8$$

= $(x - 1)(x + 2)(x^3 - x^2 + 4x - 4).$

You can factor $x^3 - x^2 + 4x - 4$ as $(x - 1)(x^2 + 4)$, and by factoring $x^2 + 4$ as

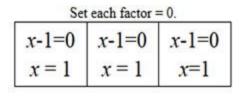
$$x^{2} - (-4) = (x - \sqrt{-4})(x + \sqrt{-4})$$
$$= (x - 2i)(x + 2i)$$

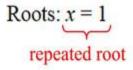
How do you know if a polynomial has a repeated solution?

if both the polynomial and its derivative have a root at r, and that means (x-r)(x-r) are factors of the polynomial. That's why we call it a double root.

$$P(x) = x^{3} - 3x^{2} + 3x - 1$$

(x - 1)(x - 1)(x - 1)= 0
repeated factor: (x - 1)^{3}





Upper and Lower Bound Rules

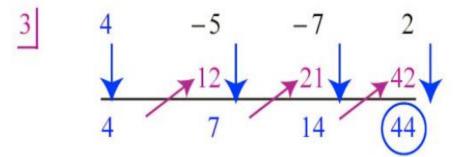
Let f(x) be a polynomial with real coefficients and a positive leading coefficient. Suppose f(x) is divided by x - c, using synthetic division.

- 1. If c > 0 and each number in the last row is either positive or zero, c is an **upper bound** for the real zeros of f.
- 2. If c < 0 and the numbers in the last row are alternately positive and negative (zero entries count as positive or negative), c is a **lower bound** for the real zeros of f.

a is a <u>lower bound</u> for the real zeros of *f*, and *b* is an <u>upper bound</u> for them \Leftrightarrow All the real zeros of *f* lie in the interval [a, b]. Show that all the real zeros of $f(x) = 4x^3 - 5x^2 - 7x + 2$ must lie in the interval [-1,3].

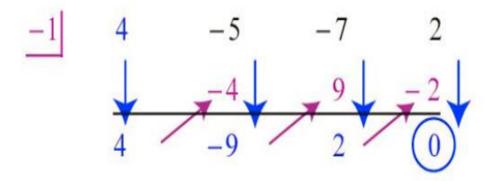
Solution

Use Synthetic Division to divide f(x) by x-3:



Because 3 > 0, and all the entries in the last row are **nonnegative**, 3 an **upper bound** for the real zeros of f.

Use Synthetic Division to divide f(x) by x - (-1):



Because -1 < 0, and the entries in the last row alternate between nonnegative and nonpositive entries, -1 is a lower bound for the real zeros of f.

1)Find the remainder when the polynomial $p(x) = x^4 + 2x^3 - 4x - 3$ is divided by (x - 3).

2)Determine whether (2x - 3) is a <u>factor</u> of $p(x) = 2x^3 + x^2 + 4x - 15$.

3)List the possible rational roots for the function

$$f(x) = x^4 + 2x^3 - 7x^2 - 8x + 12$$

4)Use the rational root theorem to find linear factorize for the following polynomial function:

 $f(x)=2x^4-11x^3+4x^2+14x-3$