Polynomials

These lecture notes give a very short introduction to polynomials with real coefficients.

Monomial: A number, a variable or the product of a number and one or more variables.

Polynomial: A monomial or a sum of monomials.

Binomial: A polynomial with exactly two terms.

<u>Trinomial</u>: A polynomial with exactly three terms.

<u>Coefficient:</u> A numerical factor in a term of an algebraic expression.

<u>Degree of a monomial:</u> The sum of the exponents of all of the variables in the monomial.

<u>Degree of a polynomial in one variable:</u> The largest exponent of that variable.

<u>Standard form:</u> When the terms of a polynomial are arranged from the largest exponent to the smallest exponent in decreasing order.

What is the degree of the monomial?

$$5x^4b^2$$

- The degree of a monomial is the sum of the exponents of the variables in the monomial.
- The exponents of each variable are 4 and 2. 4+2=6.
 - The degree of the monomial is 6.
 - The monomial can be referred to as a sixth degree monomial.

A polynomial is a monomial or the sum of monomials

$$4x^2$$
 $3x^3 - 8$ $5x^2 + 2x - 14$

- Each monomial in a polynomial is a term of the polynomial.
 - The number factor of a term is called the coefficient.
 - The coefficient of the first term in a polynomial is the lead coefficient.
- A polynomial with two terms is called a binomial.
- A polynomial with three terms is called a trinomial.

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0,$$

where a_0, a_1, \ldots, a_n are real numbers and $n \geq 1$ is a natural number. The domain of a polynomial function is $(-\infty, \infty)$.

The Degree of a Term with one variable is the exponent on the variable.

$$5x^2 \Rightarrow 2$$
, $2x^4 \Rightarrow 4$, $-9m \Rightarrow 1$

The Degree of a Term with more than one variable is the sum of the exponents on the variables.

$$-7x^2y \Rightarrow 3$$
, $2x^4y^2 \Rightarrow 6$, $-9mn^5z^4 \Rightarrow 10$

The Degree of a *Polynomial* is the greatest degree of the terms of the polynomial variables.

$$2x^3 - 3x + 7 \Rightarrow 3$$
, $2x^4y^2 + 5x^2y^3 - 6x \Rightarrow 6$

The degree of a polynomial in one variable is the largest exponent of that variable.

2 A constant has no variable. It is a 0 degree polynomial.

4x+1 This is a 1st degree polynomial. 1st degree polynomials are *linear*.

 $5x^2 + 2x - 14$ This is a 2nd degree polynomial. 2nd degree polynomial. 2nd degree polynomials are *quadratic*.

 $3x^3-8$ This is a 3rd degree polynomial. 3rd degree polynomials are *cubic.*

Classify the polynomials by degree and number of terms.

_	Polynomial	Degree	Classify by degree	Classify by number of terms
a	5	Zero	Constant	Monomial
b.	2x-4	First	Linear	Binomial
С.	$3x^2 + x$	Second	Quadratic	Binomial
d. <i>y</i>	$x^3 - 4x^2 + 1$	Third	Cubic	Trinomial

Operations on polynomial

1-Multiplying Two Polynomials

Example 1):
$$4t^2(3t^2 + 2t - 5)$$

$$12t^4 + 8t^3 - 20t^2$$

2)
$$-4m^3(-3m - 6n + 4p)$$

$$12m^4 + 24m^3n - 16m^3p$$

Examples:

$$(x+5)(x^2+10x-3) = x^3+10x^2-3x+5x^2+50x-15$$
$$x^3+15x^2+47x-15$$

$$(4x^{2} + x + 5)(3x - 4) =$$

$$12x^{3} - 16x^{2} + 3x^{2} - 4x + 15x - 20 =$$

$$12x^{3} - 13x^{2} + 11x - 20$$

2-The Division polynomials by polynomial

If f(x) and g(x) are polynomials such that $g(x) \neq 0$, and the degree of g(x) is less than or equal to the degree of f(x), there exists a unique polynomials g(x) and g(x) and g(x) such that

$$f(x) = g(x)q(x) + r(x)$$

Where r(x) = 0 or the degree of r(x) is less than the degree of g(x).

```
Quotient and Remainder

Divisor Dividend

f(x) = \text{Dividend}
g(x) = \text{Divisor}
q(x) = \text{Divisor}
q(x) = \text{Quotient and Remainder}
then,
f(x) = g(x) \ q(x) = \text{Divisor ( Quotient + [ Remainder / Divisor ] )}
```

Long Division.

use long division to divide polynomials by other polynomials x + 5

$$(x+3)(x+5)$$

$$= x^2 + 5x + 3x + 15$$

$$= x^2 + 8x + 15$$

$$x + 3$$

$$x +$$

$$\begin{array}{c}
5x + 15 \\
-5x - 15
\end{array}$$

$$x^{2} + 2x + 6$$

$$x - 1)x^{3} + x^{2} + 4x - 6$$

$$-x^{3} + x^{2}$$

$$0 + 2x^{2} + 4x$$

$$-2x^{2} + 2x$$

$$-0 + 6x - 6$$

$$-6x + 6$$

$$0$$

- 1. x goes into x^3 ? x^2 times.
- 2. Multiply (x-1) by x^2 .
- 3. Change sign, Add.
- 4. Bring down 4x.
- 5. x goes into $2x^2$? 2x times.
- 6. Multiply (x-1) by 2x.
- 7. Change sign, Add
- 8. Bring down -6.
- 9. x goes into 6x? 6 times.
- 10. Multiply (x-1) by 6.
- 11. Change sign, Add.

Divide.

$$\frac{x^3-27}{x-3}$$

$$(x-3)x^3-27$$

$$x^{2} + 3x + 9$$

$$(x-3)x^{3} + 0x^{2} + 0x - 27$$

$$-x^{3} + 3x^{2}$$

$$3x^2 + 0x$$
$$-3x^2 + 9x$$

$$9x - 27$$

$$-9x + 27$$

0

Long Division.

Check

$$(x+2)(x-4)$$
= $x^2 - 4x + 2x - 8$
= $x^2 - 2x - 8$

$$x + 2$$

$$x - 4)x^2 - 2x - 8$$

$$-x^2 + 4x$$

$$\begin{array}{c}
2x - 8 \\
-2x + 8
\end{array}$$

- How to
- How to use the Remainder Theorem and the Factor Theorem

Synthetic Division

is a shorthand, or shortcut, method of polynomial division in the special case of dividing by a degree one polynomial -and it only works in this case.

$$\frac{x^4 - 10x^2 - 2x + 4}{x + 3} = x^3 - 3x^2 - x + 1 + \frac{1}{x + 3}$$

SYNTHETIC DIVISION: $(5x^3-13x^2+10x-8)\div(x-2)$ **STEP #1:** Write the Polynomial in DESCENDING ORDER

by degree and write any ZERO coefficients for missing degree terms in order

Polynomial Descending Order:
$$5x^3 - 13x^2 + 10x - 8$$

STEP #2: Solve the Binomial Divisor = Zero

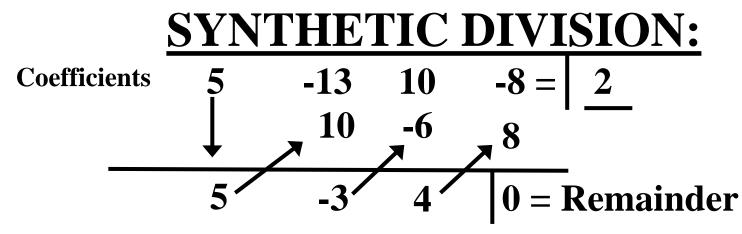
$$x-2=0; x=2$$
ZERO value, then all the

STEP #3: Write the ZERO-value, then all the COEFFICIENTS of Polynomial.

Coefficients 5
$$-13$$
 10 $-8 =$ Zero = 2

STEP #4 (Repeat):

(1) ADD Down, (2) MULTIPLY, (3) Product → Next Column



STEP #5: Last Answer is your REMAINDER

STEP #6: POLYNOMIAL DIVISION QUOTIENT

Write the coefficient "answers" in descending order starting with a Degree ONE LESS THAN Original Degree and include NONZERO REMAINDER OVER DIVISOR at end

(If zero is fraction, then divide coefficients by denominator)

$$5 \quad -3 \quad 4 \rightarrow 5x^2 - 3x + 4$$

$$(5x^3 - 13x^2 + 10x - 8) \div (x - 2) = 5x^2 - 3x + 4$$

SYNTHETIC DIVISION: Practice

[1]
$$(3x^5-7x^4-4x^2-2x-6)(x-3)^{-1}$$

$$3 \quad 2 \quad 6 \quad 14 \quad 40 \quad 114 \qquad \qquad 3x^4 + 2x^3 + 6x^2 + 14x + 40 + \frac{114}{x-3}$$

[2]
$$(8x^4-4x^2+x+4)\div(2x+1)$$

$$4x^3 - 2x^2 - x + 1 + \frac{3}{2x + 1}$$

$$[3(x^4-5x^3-13x^2+10)\div(x+1)]$$

$$[4](x^3 + 2x^2 - 5x + 12) \div (x + 4)$$

REMAINDER THEOREM

The remainder theorem says that if we divide a polynomial f(x) by x-a, the remainder is given by f(a)

Proof of the Remainder theorem

Let f(x) be a polynomial that is divided by x - a

The quotient is another polynomial and the remainder is a constant.

We can write
$$\frac{f(x)}{x-a} \equiv g(x) + \frac{R}{x-a}$$

Multiplying by x-a gives

$$f(x) \equiv (x-a)g(x) + R$$
 So,
$$f(a) = (a-a)g(a) + R$$

$$= R$$

Given a polynomial function
$$f(x)$$
:
then $f(a)$ equals the remainder of

Example: Find the given value

 $f(x)$:
 $f(x)$
 $f(x)$

[A]
$$f(x) = x^3 + 3x^2 - 4x - 7$$
, find $f(2)$

Method #1: Synthetic Division

1 -3 4 -4 9 f(-3) = 81 - 45 - 24 - 3 = 9

Method #2: Substitution/ Evaluate

Ex: Find the remainder when divided by x-2

 $x^3 + 3x^2 - 4x + 1$ is

Solution: Let
$$f(x) = x^3 + 3x^2 - 4x + 1$$

So, $a = 2 \implies R = f(2)$
 $f(2) = (2)^3 + 3(2)^2 - 4(2) + 1$
 $= 8 + 12 - 8 + 1$
 $\Rightarrow R = 13$

The Factor Theorem:

or

When f(a)=0 then x-a is a factor of f(x)

When x-a is a factor of f(x) then f(a)=0

FACTOR THEOREM:

(x - a) is a factor of f(x) iff f(a) = 0remainder = 0

Example: Factor a Polynomial with Factor Theorem

Given a polynomial and one of its factors, find the remaining factors using synthetic division.

Polynomial:
$$x^3 + 3x^2 - 36x - 108$$
; Factor = $(x + 3)$

Therefore
$$x^3 + 3x^2 - 36x - 108 = (x+3)(x+6)(x-6)$$

examples:

Given a polynomial and one of its factors, find the remaining factors.

[A]
$$x^3 + 4x^2 - 15x - 18$$
; Factor = $(x - 3)$

$$x^2 + 7x + 6$$

$$(x+6)(x+1)$$

STOP once you have a quadratic!

$$(x-3)(x+6)(x+1)$$

[B]
$$2x^3 + 17x^2 + 23x - 42$$
; Factor = $(2x + 7)$

STOP once you have a quadratic!

$$(2x+7)(x+6)(x+1)$$

Example 1: Find ZEROS/ROOTS of a Polynomial

[B]

[D]

by FACTORING: (1) Factor by Grouping (2) U-Substitution

(3) Difference of Squares, Difference of Cubes, Sum of Cubes

[A]
$$f(x) = x^3 + 2x^2 + 4x + 8$$

Factor by Grouping
$$= x^2(x+2) + 4(x+2)$$

$$0 = (x^2 + 4)(x + 2)$$

$$x = \{\pm 2i, -2\}$$

$$f(x) = x^3 - 3x^2 + 9x - 27$$

$$= x^2(x-3) + 9(x-3)$$

$$0 = (x^2 + 9)(x - 3)$$

$$x = \{\pm 3i, 3\}$$

[C]
$$f(x) = x^4 - 16$$

 $= (x^2 + 4)(x^2 - 4)$
 $= (x^2 + 4)(x + 2)(x - 2)$
 $\{\pm 2i, \pm 2\}$

$$f(x) = x^3 - 27$$

$$= (x - 3)(x^2 + 3x + 9)$$

$$\left\{3, \frac{-3 \pm 3i\sqrt{3}}{2}\right\}$$

Some facts :-

- 1-If r is a zero of P(x) then x r will be a factor of p(x). 2-If x - r is a factor of P(x) then r will be a zero of P(x).
- 3-If P(x) is a polynomial of degree n and r is a zero of P(x) then P(x) can be written in the following form.
- P(x) = (x r)q(x), where q(x) is a polynomial with degree n-1. q(x) can be found by dividing p(x)by x r

Roots & Zeros of Polynomials I

How the roots, solutions, zeros, x-intercepts and factors of a polynomial function are related.

B. Zero Product Property

- For all numbers a and b, if ab = 0, then
- a = 0, b = 0, or both a and b equal 0

C. Solving a Polynomial Equation

Rearrange the terms to have zero on one side:

$$x^2 + 2x = 15 \implies x^2 + 2x - 15 = 0$$

Factor:

$$(x+5)(x-3) = 0$$

Set each factor equal to zero and solve:

$$(x+5) = 0$$
 and $(x-3) = 0$
 $x = -5$ $x = 3$

The only way that $x^2 + 2x - 15$ can = 0 is if x = -5 or x = 3

D. Factors, Roots, Zeros

For our *Polynomial Function*:

$$y = x^2 + 2x - 15$$

The <u>Factors</u> are: (x+5) & (x-3)

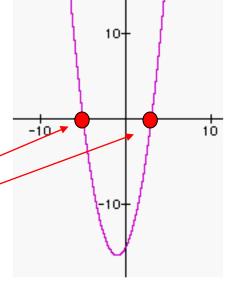
The <u>Roots/Solutions</u> are: x = -5 and 3

The \underline{Zeros} are at: (-5, 0) and (3, 0)

E. Graph of a Polynomial Function

Here is the graph of our polynomial function:

$$y = x^2 + 2x - 15$$



The \underline{Zeros} of the Polynomial are the values of x when the polynomial equals zero. In other words, the \underline{Zeros} are the x-values where \underline{v} equals \underline{zero} .

These are also the roots and the x-intercepts.

II. Finding RootsA. Fundamental Theorem of Algebra

Every Polynomial Equation with a degree higher than zero has at least one root in the set of <u>Complex Numbers</u>.

Note: If P(x)P(x) is a polynomial of degree n then P(x) will have exactly nn zeroes, some of which may repeat.

Linear Factorization Theorem

If f(x) is a polynomial of degree n, where n > 0, then f has precisely n linear factors

$$f(x) = a_n(x - c_1)(x - c_2) \cdot \cdot \cdot (x - c_n)$$

where c_1, c_2, \ldots, c_n are complex numbers.

Example 1

Zeros of Polynomial Functions

- a. The first-degree polynomial f(x) = x 2 has exactly *one* zero: x = 2.
- b. Counting multiplicity, the second-degree polynomial function

$$f(x) = x^2 - 6x + 9 = (x - 3)(x - 3)$$

has exactly two zeros: x = 3 and x = 3. (This is called a repeated zero.)

c. The third-degree polynomial function

$$f(x) = x^3 + 4x = x(x^2 + 4) = x(x - 2i)(x + 2i)$$

has exactly three zeros: x = 0, x = 2i, and x = -2i.

d. The fourth-degree polynomial function

$$f(x) = x^4 - 1 = (x - 1)(x + 1)(x - i)(x + i)$$

has exactly four zeros: x = 1, x = -1, x = i, and x = -i.

Finding EXACT ZEROS (ROOTS) of a Polynomial

[1] FACTOR when possible & Identify zeros:

Set each Factor Equal to Zero

[2a] All Rational Zeros =
$$\pm \frac{Factors \ of \ P}{Factors \ of \ Q}$$

P = leading coefficient, Q = Constant of polynomial

[2b] Use SYNTHETIC DIVISION

(repeat until you have a quadratic)

[3] Identify the remaining zeros

- \rightarrow Solve the quadratic = 0
- (1) factor (2) quad formula (3) complete the square

The Rational Zero Test

If the polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0$ has *integer* coefficients, every rational zero of f has the form

Rational zero =
$$\frac{p}{q}$$

where p and q have no common factors other than 1, and

$$p = a$$
 factor of the constant term a_0

q = a factor of the leading coefficient a_n .

Possible rational zeros
$$=$$
 $\frac{\text{factors of constant term}}{\text{factors of leading coefficient}}$

Example 2: Find ZEROS/ROOTS of a Polynomial by SYNTHETIC DIVISION (Non-Calculator)

- Find all values of $\frac{1}{Q}$
- Check each value by synthetic division

[A]
$$f(x) = x^3 - 3x - 2$$

Possible Zeros (P/Q)

$$\pm 1, \pm 2$$

$$1 \quad 0 \quad -3 \quad -2$$

[B]
$$f(x) = x^3 + 3x^2 - 25x + 21$$

$$\pm 1, \pm 3, \pm 7, \pm 21$$

Example 2: PRACTICE

[C]
$$f(x) = x^4 + 10x^3 + 33x^2 + 38x + 8$$
 [D] $f(x) = x^3 - 3x^2 + x - 3$

$$f(x) = x^3 - 3x^2 + x - 3$$

$$\pm 1, \pm 2, \pm 4, \pm 8$$

$$1 - 3 9 - 27$$

Example 2: PRACTICE

[E]
$$f(x) = 2x^3 + 3x^2 - 4x - 4$$

$$\pm 1$$
, ± 2 , ± 4 , $\pm \frac{1}{2}$

[E]
$$f(x) = 2x^3 + 3x^2 - 4x - 4$$
 [F] $f(x) = 2x^4 - 7x^3 + 4x^2 + 7x - 6$

$$\pm 1$$
, ± 2 , ± 3 , ± 6 , $\pm \frac{1}{2}$, $\pm \frac{3}{2}$

$$2 -7 \ 4 \ 7 \ -6$$

Example 2: PRACTICE

[G]
$$f(x) = 6x^3 + 5x^2 - 3x - 2$$

[G]
$$f(x) = 6x^3 + 5x^2 - 3x - 2$$
 [H] $f(x) = 3x^3 - 4x^2 - 17x + 6$

$$\pm 1$$
, ± 2 , $\pm \frac{1}{2}$, $\pm \frac{1}{3}$, $\pm \frac{2}{3}$, $\pm \frac{1}{6}$ ± 1 , ± 2 , ± 3 , ± 6 , $\pm \frac{1}{3}$, $\pm \frac{2}{3}$

$$\pm 1$$
, ± 2 , ± 3 , ± 6 , $\pm \frac{1}{3}$, $\pm \frac{2}{3}$

$$6 \ 5 \ -3 \ -2$$

Find the rational zeros of $f(x) = x^4 - x^3 + x^2 - 3x - 6$.

Solution

Because the leading coefficient is 1, the possible rational zeros are the factors of the constant term.

Possible rational zeros: ± 1 , ± 2 , ± 3 , ± 6

By applying synthetic division successively, you can determine that x = -1 and x = 2 are the only two rational zeros.

So, f(x) factors as

$$f(x) = (x + 1)(x - 2)(x^2 + 3).$$

Because the factor $(x^2 + 3)$ produces no real zeros, x = -1 and x = 2 are the only *real* zeros of f, Find the rational zeros of $f(x) = 2x^3 + 3x^2 - 8x + 3$.

Solution

The leading coefficient is 2 and the constant term is 3.

Possible rational zeros:
$$\frac{\text{Factors of 3}}{\text{Factors of 2}} = \frac{\pm 1, \pm 3}{\pm 1, \pm 2} = \pm 1, \pm 3, \pm \frac{1}{2}, \pm \frac{3}{2}$$

By synthetic division, you can determine that x = 1 is a rational zero.

So, f(x) factors as

$$f(x) = (x - 1)(2x^2 + 5x - 3)$$
$$= (x - 1)(2x - 1)(x + 3)$$

and you can conclude that the rational zeros of f are x = 1, $x = \frac{1}{2}$, and x = -3.

Complex Zeros Occur in Conjugate Pairs

Let f(x) be a polynomial function that has *real coefficients*. If a + bi, where $b \neq 0$, is a zero of the function, the conjugate a - bi is also a zero of the function.

Find a fourth-degree polynomial function with real coefficients that has -1, -1, and 3i as zeros.

Solution

Because 3i is a zero *and* the polynomial is stated to have real coefficients, you know that the conjugate -3i must also be a zero. So, from the Linear Factorization Theorem, f(x) can be written as

$$f(x) = a(x + 1)(x + 1)(x - 3i)(x + 3i).$$

For simplicity, let a = 1 to obtain

$$f(x) = (x^2 + 2x + 1)(x^2 + 9)$$
$$= x^4 + 2x^3 + 10x^2 + 18x + 9.$$

Find all the zeros of $f(x) = x^4 - 3x^3 + 6x^2 + 2x - 60$ given that 1 + 3i is a zero of f.

Because complex zeros occur in conjugate pairs, you know that 1 - 3i is also a zero of f. This means that both

$$[x - (1 + 3i)]$$
 and $[x - (1 - 3i)]$

are factors of f. Multiplying these two factors produces

$$[x - (1 + 3i)][x - (1 - 3i)] = [(x - 1) - 3i][(x - 1) + 3i]$$
$$= (x - 1)^2 - 9i^2$$
$$= x^2 - 2x + 10.$$

Using long division, you can divide $x^2 - 2x + 10$ into f to obtain the following.

$$x^{2} - x - 6$$

$$x^{2} - 2x + 10)x^{4} - 3x^{3} + 6x^{2} + 2x - 60$$

$$x^{4} - 2x^{3} + 10x^{2}$$

$$-x^{3} - 4x^{2} + 2x$$

$$-x^{3} + 2x^{2} - 10x$$

$$-6x^{2} + 12x - 60$$

$$-6x^{2} + 12x - 60$$

So, you have

$$f(x) = (x^2 - 2x + 10)(x^2 - x - 6)$$
$$= (x^2 - 2x + 10)(x - 3)(x + 2)$$

and you can conclude that the zeros of f are x = 1 + 3i, x = 1 - 3i, x = 3, and x = -2.

Write $f(x) = x^5 + x^3 + 2x^2 - 12x + 8$ as the product of linear factors, and list all of its zeros.

Solution

The possible rational zeros are ± 1 , ± 2 , ± 4 , and ± 8 . Synthetic division produces the following.

So, you have

$$f(x) = x^5 + x^3 + 2x^2 - 12x + 8$$

= $(x - 1)(x + 2)(x^3 - x^2 + 4x - 4)$.

You can factor $x^3 - x^2 + 4x - 4$ as $(x - 1)(x^2 + 4)$, and by factoring $x^2 + 4$ as

$$x^{2} - (-4) = (x - \sqrt{-4})(x + \sqrt{-4})$$
$$= (x - 2i)(x + 2i)$$

Upper and Lower Bound Rules

Let f(x) be a polynomial with real coefficients and a positive leading coefficient. Suppose f(x) is divided by x - c, using synthetic division.

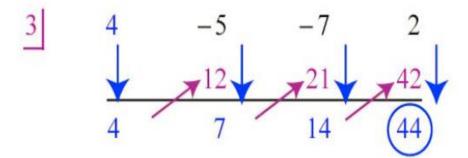
- 1. If c > 0 and each number in the last row is either positive or zero, c is an **upper bound** for the real zeros of f.
- 2. If *c* < 0 and the numbers in the last row are alternately positive and negative (zero entries count as positive or negative), *c* is a **lower bound** for the real zeros of *f*.

a is a <u>lower bound</u> for the real zeros of f, and b is an <u>upper bound</u> for them \Leftrightarrow All the real zeros of f lie in the interval [a, b].

Show that all the real zeros of $f(x) = 4x^3 - 5x^2 - 7x + 2$ must lie in the interval [-1, 3].

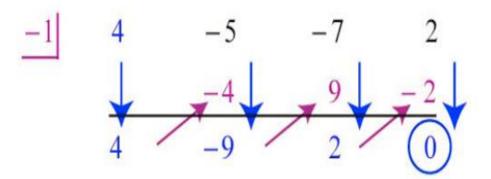
Solution

Use Synthetic Division to divide f(x) by x-3:



Because 3 > 0, and all the entries in the last row are **nonnegative**, 3 an **upper bound** for the real zeros of f.

Use Synthetic Division to divide f(x) by x-(-1):



Because -1 < 0, and the entries in the last row alternate between nonnegative and nonpositive entries, -1 is a lower bound for the real zeros of f.