Lecture: Pascal's Triangle and the Binomial Theorem

Pascal's Triangle

The numbers in Pascal's Triangle are so arranged that they reflect as a triangle. Firstly, 1 is placed at the top, then 1s at both sides of the triangle and then we start putting the numbers in a triangular pattern. The numbers in middle we get in each step by addition of the above two numbers. It is similar to the concept of triangular numbers .

Pascal's triangle is used widely in probability theory, combinatorics, and algebra.

Blaise Pascal was born at Clermont-Ferrand, in the Auvergne region of France on June 19, 1623. In 1653 he wrote the article on the Arithmetical Triangle which today is known as the **Pascal's Triangle**.

Properties of Pascal's Triangle

- Each number is the sum of the two numbers above it.
- The outside numbers are all 1.
- The triangle is symmetric.
- The first diagonal shows the counting numbers.
- The sums of the rows give the powers of 2.

Pascal's Triangle Patterns

1) Addition of the Rows: One of the interesting properties of the triangle is that the sum of numbers in a row is equal to 2 where n corresponds to the number of the row: 1 = 1 = 21 + 1 = 2 = 21 + 2 + 1 = 4 = 21 + 3 + 3 + 1 = 8 = 21 + 4 + 6 + 4 + 1 = 16 = 2

2-Fibonacci Sequence in the Triangle:

By adding the numbers in the diagonals of the Pascal triangle the <u>Fibonacci</u> <u>sequence</u> can be obtained as seen in the figure given below.

Fibonacci Sequence in the Pascal's Triangle

The Binomial Theorem

An expression consisting of two terms, connected by + or – sign is called a binomial expression. For example,

x + a, 2x - 3y, $\frac{1}{x} - \frac{1}{y}$, etc., are all binomial

Binomial Coefficients

· 0

We know that a *binomial* is a polynomial that has two terms., you will study a formula that provides a quick method of raising a binomial to a power.

look at the expansion of $(x + y)^n$, for several values of *n*

$$\begin{split} &(x+y)^0 = 1, \\ &(x+y)^1 = x+y, \\ &(x+y)^2 = x^2 + 2xy + y^2, \\ &(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3, \\ &(x+y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4, \\ &(x+y)^5 = x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5, \\ &(x+y)^6 = x^6 + 6x^5y + 15x^4y^2 + 20x^3y^3 + 15x^2y^4 + 6xy^5 + y^6, \\ &(x+y)^7 = x^7 + 7x^6y + 21x^5y^2 + 35x^4y^3 + 35x^3y^4 + 21x^2y^5 + 7xy^6 + y^7, \\ &(x+y)^8 = x^8 + 8x^7y + 28x^6y^2 + 56x^5y^3 + 70x^4y^4 + 56x^3y^5 + 28x^2y^6 + 8xy^7 + y^8. \end{split}$$

1. In each expansion there are n+1 terms

2-The sum of the powers of each term is *n*. For instance, in the expansion of

 $(x + y)^5$

the sum of the powers of each term is 5.

$$(x + y)^5 = x^5 + 5x^4y^1 + 10x^3y^2 + 10x^2y^3 + 5x^1y^4 + y^5$$

2. The coefficients increase and then decrease in a symmetric pattern.

The coefficients of a binomial expansion are called **binomial coefficients.**

Binomial Coefficients

When n is a positive whole number

$$(a+b)^{n} = a^{n} + na^{n-1}b + \frac{n(n-1)}{2!}a^{n-2}b^{2} + \frac{n(n-1)(n-2)}{3!}a^{n-3}b^{3} + \frac{n(n-1)(n-2)(n-3)}{4!}a^{n-4}b^{4} + \dots + b^{n}$$

The Binomial Theorem In the expansion of $(x + y)^n$ $(x + y)^n = x^n + nx^{n-1}y + \dots +_n C_r x^{n-r} y^r + \dots + nxy^{n-1} + y^n$ the coefficient of $x^{n-r} y^r$ is ${}_n C_r = \frac{n!}{(n-r)!r!}$. The symbol $\binom{n}{r}$ is often used in place of ${}_n C_r$ to denote binomial coefficients.

Find each binomial coefficient.

a.
$$_{8}C_{2}$$
 b. $\binom{10}{3}$

c. $_{7}C_{0}$

Solution:

a.
$$_{8}C_{2} = \frac{8!}{6! \cdot 2!} = \frac{(8 \cdot 7) \cdot 6!}{6! \cdot 2!} = \frac{8 \cdot 7}{2 \cdot 1} = 28$$

b. $\binom{10}{3} = \frac{10!}{7! \cdot 3!} = \frac{(10 \cdot 9 \cdot 8) \cdot 7!}{7! \cdot 3!} = \frac{10 \cdot 9 \cdot 8}{3 \cdot 2 \cdot 1} = 120$

c. $_{7}C_{0} = \frac{7!}{7! \cdot 0!} = 1$

Write the expansion of the expression $(x + 1)^3$.

Solution:

The binomial coefficients are

$$_{3}C_{0} = 1$$
, $_{3}C_{1} = 3$, $_{3}C_{2} = 3$, and $_{3}C_{3} = 1$.

Therefore, the expansion is as follows.

$$(x + 1)^3 = (1)x^3 + (3)x^2(1) + (3)x(1^2) + (1)(1^3)$$

$$= x^3 + 3x^2 + 3x + 1$$

Sometimes you will need to find a specific term in a binomial expansion.

Instead of writing out the entire expansion, you can use the fact that, from the Binomial Theorem $(x + y)^n$, the (r + 1)th term is

 $_{n}C_{r}x^{n-r}y^{r}$.

Example – Finding a Term or Coefficient in a Binomial Expansion

a. Find the sixth term of $(a + 2b)^8$.

Solution:

a. Because the formula is for the (r + 1)th term, *r* is one less than the number of the term you need. So, to find the sixth term in this binomial expansion, use r = 5, n = 8, x = a and y = 2b.

$${}_{n}C_{r} x^{n-r} y^{r} = {}_{8}C_{5} a^{8-5} (2b)^{5}$$
$$= 56 \cdot a^{3} \cdot (2b)^{5}$$
$$= 56(2^{5}) a^{3} b^{5}$$

 $= 1792a^{3}b^{5}$

find the first three terms in the expansion of $(3-5z)^{14}$.

Pascal's Triangle

We will now see how useful the triangle can be when we want to expand a binomial expression.

Using Pascal's triangle to expand a binomial expression

Pascal noticed that the numbers in this triangle are precisely the same numbers as the coefficients of binomial expansions, as follows.

$(x + y)^0 = 1$	Oth row
$(x + y)^1 = 1x + 1y$	1st row
$(x + y)^2 = 1x^2 + 2xy + 1y^2$	2nd row
$(x + y)^3 = 1x^3 + 3x^2y + 3xy^2 + 1y^3$	3rd row
$(x + y)^4 = 1x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + 1y^4$	B
$(x + y)^5 = 1x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + 1y^5$	
$(x + y)^6 = 1x^6 + 6x^5y + 15x^4y^2 + 20x^3y^3 + 15x^2y^4 + 6xy^5 + 1y^6$	
$(x + y)^7 = 1x^7 + 7x^6y + 21x^5y^2 + 35x^4y^3 + 35x^3y^4 + 21x^2y^5 + 7xy^6 + 1y^7$	

Example : Use Pascal's Triangle to expand $(2a + b)^4$.

 $(2a + b)^{4} = 1(2a)^{4} + 4(2a)^{3}b + 6(2a)^{2}b^{2} + 4(2a)b^{3} + 1b^{4}$ $= 1(16a^{4}) + 4(8a^{3})b + 6(4a^{2}b^{2}) + 4(2a)b^{3} + b^{4}$ $= 16a^{4} + 32a^{3}b + 24a^{2}b^{2} + 8ab^{3} + b^{4}$

Exercises

- 1. Use the binomial theorem to expand (a) $(1 + x)^4$ and (b) $(1 + x)^5$.
- 2. Use the binomial theorem to expand $(1+2x)^3$.
- 3. Use the binomial theorem to expand $(1-3x)^4$.
- 4. Use the binomial theorem to find the first three terms in ascending powers of x of $(1 \frac{x}{2})^8$.
- 5. Find the coefficient of x^5 in the expansion of $(1 + 4x)^9$.
- 6. In the expansion of $(1-x)^8$ find the coefficient of x^7 .
- 7. Find the first four terms in the expansion of $\left(2+\frac{x}{3}\right)^{12}$.