Predicates and Quantifiers

Review

[l Proposition:
1. ltis a sentence that declares a fact.
2. ltis either true or false, but not both.
Examples:
O 2+1=3.
True Proposition

0 Toronto is the capital of Canada.
False Proposition

O x+1=2

Neither true nor false

[1 Logical Operators

B Negation
p “not p.”
B Conjunction
paAqg ‘pandq.”
B Disjunction
pvq porg.”
B Exclusive or
pEq ‘p or g, but not both.”
B Conditional statement
p—q 9f p, thenqg.”

B Biconditional statement
p==q ‘pifandonlyifqg.”




Predicate Logic

L] More powerful

[1 Express a wide range of statements in
mathematics and computer science

Predicates

value of propositional function P at x

P(x)

denotes predicate JL
denotes variable

Example: x> 3

* The variable x is the subject of the statement

* Predicate “is greater than 3” refers to a property
that the subject of the statement can have

* Can denote the statement by p(x) where p denotes
the predicate “is greater than 3” and x is the variable

* p(x): also called the value of the propositional
function p at x

* Once a value is assigned to the variable x, p(x)
becomes a proposition and has a truth value




Predicates (example)

P(x) : x>3.
What are the truth value of P(4) and P(2)7

Solution:
[1 Set variable x
B x=4
P(4): 4>3
True
B x=2
P(2): 2>3
False

Q(X,y) : x = y+3.
What are the truth value of Q(1,2) and Q(3,0)?

Solution:

[1 Setvariables x and y
m x=1,y=2
Q(1,2): 1=2+3
False
B x=3, y=0
Q(3,0): 3=0+3
True




Quantifiers

L] Create a proposition from a propositional
function using Quantifiers

L1 Quantifiers express the range of elements
the statement is about.

B The universal quantifier
B The existential quantifier

The universal quantifier

[1 The universal quantifier is used to assert a
property of all values of a variable in a
particular domain.

[1 The universal quantification of P(x) is

“P(x) for all values of x in the domain.”,
denoted by Yx P(x)

The universal quantifier

[] The universal quantifier
For all ...

For every ...

For each ...

All of ...

For arbitrary ...




Exet P(x): x+1 > X

The universal quantifier of P(x) is in the domain
of real numbers:

Vx P(x) (x is a real number)
Vx ( Xx+1 > x) (x is a real number)

L] Vx P(x)

m \When true?
] P(x) is true for every x in the domain

m \When false?

] P(x) is not always true when x is in the
domain

(find a value of x that P(x) is false)

[1 An element for which P(x) is false is called
a counterexample of Vx P(x).

P(x): x>3
P(2): 2>3 is a counterexample of ¥x P(x)




P(x): x+1 > x.
What is the truth value of ¥x P(x) in the domain
of real numbers?

Solution:

[1 Check if P(x) is true for all real numbers

B “x+1 > X" is true for all real number
So, the truth value of ¥x P(x) is true.

Q(x): x < 2.
What is the truth value of ¥x Q(x) in the domain
of real numbers?

Solution:

[l Find a counterexample for Vx Q(x)

B Q(3): 3<2 is false
x=3 is a counterexample for ¥x Q(x), so ¥x Q(x) is false.

P(x): x2 > 0.
What is the truth value of ¥x P(x) in the domain
of integers?

Solution:

[l Find a counterexample for ¥x P(x)
B P(0): 0>0 is false

x=0 is a counterexample for ¥x P(x), so Vx P(x) is false.




P(x): x2 = x.
What is the truth value of ¥x P(x) in the domain of all
real numbers?

Solution: How to find a counterexample?

X2 2 X.

(x2-x)=x(x-1)=0.
x and (x-1) must both be x and (x-1) must both be
zero or positive. OR | zero or negative.
X=z0and (x-1)=0 X=0and(x-1)=<0
X=0andx =1 X=0andx<1
Xz1 X=0

0 < x <1 such as x=1/2 is a counterexample

P(x): x2 = x.
What is the truth value of Vx P(x) in the domain
of all integers?

Solution:
[1 Check if P(x) is true for all integers
m P(x)istruewhenx=1orx=0.
B There is no integer between 0 < x < 1.
B So, VX P(X) is true for the domain of all integers.




[1 ¥Vx P(xX) in the domain D
L1 If D can be listed as x4, X5, ..., X,

Vx P(x) in the domain D is the same as
P(x,) A P(X;) A ... A P(X,)

P(x): x2 < 10.
What is the truth value of ¥x P(X) in the domain of
positive integers not exceeding 47

Solution:

(1 List the domain
B Domainis 1, 2, 3, 4.

] Find the equivalent conjunction and its truth value
B P(1)aAP(2)AP((3) A P(4)
B TATATAaF whichis false

1 So, P(4) is a counterexample and ¥x P(x) is false.




The existential quantifier

L[] The existential quantifier is used to assert a
property of at least one value of a
variable in a domain.

[1 The existential quantification of P(x) is

“There exists an element x in the domain such that
P(x).”,
denoted by Ix P(x)

The existential quantifier

[1 The existential quantifier
B There exists ...
M Thereis ...
® Forsome ...
B Foratleastone ...

ExLet P(x): x> 3

The existential quantifier of P(x) is in the
domain of integers:

dx P(x) (x is an integer)
dx(x>3) (xis an integer)




L1 dx P(x)

B \When true?
[1 There is an x for which P(x) is true.
(find a value of x that P(x) is true.)

B \When false?
1 P(x) is false for every x.

P(x): x > 3.
What is the truth value of dx P(X) in the
domain of real numbers?

Solution:

[l Check if P(x) is true for some real numbers

B “x>3"is true when x = 4.
So, the truth value of dx P(x) is true.




Q(Xx): x = x+1.
What is the truth value of Ix Q(x) in the
domain of real numbers?

Solution:

[1 Check if Q(x) Is false for all real numbers

B “x = x+17 is false for all real numbers.
So, the truth value of dx Q(x) is false.

[1 dx P(xX) in the domain D
L1 If D can be listed as x4, X,, ..., X,

dx P(x) in the domain D is the same as
P(x,) v P(X5) v ... v P(X,)

P(x): x2 > 10.
What is the truth value of 3x P(X) in the domain of
positive integers not exceeding 47

Solution:

[1 List the domain
® Domainis 1, 2, 3, 4.

[0 Find the equivalent disjunction and its truth value
m P(1)vP2)vP3)vP4)
m FvFvFvTwhichistrue.

1 So, X P(x) is true.




Quantifiers (review)

Statement |When True? When False?
Vx P(x) |P(x) is true for There is an x for
every X. which P(x) is false.

dx P(x) |There is an x for P(x) is false for
which P(x) is true. |every x.

Translating from English into logical
expression (example)

Express the following statement using predicates
and quantifiers?

“Every student in this class has studied
calculus.”

Solution:

[1 Determine individual propositional function
B P(X): x has studied calculus.

[1 Translate the sentence into logical expression
m VX P(x) domain: students in class




Express the following statement using predicates
and quantifiers?

“Some student in this class has visited Mexico.”
Solution:

[1 Determine individual propositional function
B P(x): X has visited Mexico.

[1 Translate the sentence into logical expression
B 3x P(x) domain: students in class

Express the following statement using predicates and
quantifiers?

“Every student in this class has visited either the US or
Mexico.”

Solution:
[1 Determine individual propositional functions

m P(x): x has visited the US.
B Q(x): x has visited Mexico.

[0 Translate the sentence into logical expression
B vx ( P(x) v Q(x)) domain: students in class

Quantifiers with restricted
domains

* What do the following statements mean for
the domain of real numbers?

Vx<0,x>>0 sameas Vx(x<0— x> >0)
Vy#0,7° 20 sameas Vy(y=0— y° #0)

d2>0,z° =2 sameas Jz(z>0Az>=2)




Binding variables

L1 Variable
m Bound
0 Quantifiers
m Free
0 Not bound

[1 Turn a propositional function into a
proposition
m All variables must be bound.

IAx (x+y=1).
Is it a proposition?

Solution:
[0 Check if any variable is free
m Variable x
1 bound
m Variable y
0 Free

B Since variable vy is free, it is not a proposition.




Negating quantified expression

[1 Assume VX P(X) is:

“Every student has taken a course in calculus.”

L1 = (VX P(x)) is:

“It is not the case that every student has taken a
course in calculus.”

“There is a student who has not taken a course in
calculus.”

dx -P(x)

= (VX P(x)) = Ix =P(x)

Negating quantified expression
(example)

What is the negation of ¥x (x2 > x)?

Solution:
(VX (x2>X)) =
Ix (X% > X) =
Ix (x2 = x)

What is the negation of ¥x (x2 = x)?

Solution:
(VX (X2 >x)) =
dx (X2 = X) =
dx (X2 = X)




De Morgan’s laws for quantifiers

Negation Equivalent st. | When true? When false?
7 Vx P(x) dx -P(x) There is an x that |For all x P(x) is
P(x) is false. true.
= 3x P(x) Vx =P(x) For all x P(x) is There is an x that
false. P(x) is true.
[0 ¥x P(x) in the domain D
] If D can be listed as x4, X5, ..., X,-

0 Vx P(x) =
P(x1) A P(X2) A ... A P(X,)

L] = V¥Xx P(X) =
“(P(X4) A P(X) A ... A P(Xp)) =
—|P(X1) A% _lP()(z) v ... WV —|P(Xn))

dx P(x) in the domain D
If D can be listed as x4, X5, ..., X

O 0O

n-

0 3Ix P(x) =
P(x;) v P(X) v ... v P(x,)

1 = 3x P(X) =
“(P(Xq) v P(X5) v ... v P(X,)) =
P(Xy) A P(X5) A oo A P(XL))




Logical Equivalences Involving Quantifiers

Statements involving predicates and quantifiers are logically equivalent iff they have the
same truth value for all applications and for all domains of discourse.

Va(P(x) A Q(x)) = Va(P(x)) A VX(Q(x))
—VxP(x) = Ix—P(x)

—3dxP(x) = Vx—P(x)

~Va(P(x) > Q(x) = (P A —Q(x))

De Morgan's Laws for Quantifiers

Show that -Vx [P(x) — Q(x)] and 3x [P(x) A -Q(x)]
are logically equivalent

-Vx [P(x) — Q(x)]

dx =[P(x) —» Q(x)] De Morgan's

= dx=[-P(x) v Q(x)] Implication definition
Ix [P(x) A =Q(x)] De Morgan's




Nested quantifiers

Two quantifiers are nested if one is within the
scope of the other.

P(x,y)
Example: =

Q(x)
Vx Q(x)
Q(x) is Ay P(x,y)
P(x,y)is (x +y =0)

Translate the following statement into English.
VxVy(x+y=y+Xx)
Domain: real numbers

Solution:
For all real numbers xandy, x+y =y + x.

Translate the following statement into English.
Vx3dy (x=-y)
Domain: real numbers

Solution:

For every real number X, there is a real
number y such that x = - y.




Multiple quantifiers

+ You can have multiple quantifiers on a statement

« ¥x3y P(X, y)
— “For all %, there exists a y such that P(x,y)"
— Example: vx3y (x+y == 0)

 IAXVY P(X,y)
— There exists an x such that for all y P(x,y) is true”
— Example: Ixvy {(x*y == 0)

Meanings of multiple quantifiers

® VxVy P(x,y) P(x,y) true for all x, y pairs.

® dx3dy P(x,y) P(x,y) true for at least one x, y par.

® Vxdy P(x,y) For every value of x we can find a (possibly different)
y so that P(x,y) is true.

® JxVy P(x,y)

There is at least one x for which P(x,y)
is always true.

Suppose P(x,y) = “x's favorite class is y."

quantification order is not
commutative.




The order of quantifiers

The order of nested universal quantifiers
in a statement without other quantifiers
can be changed without changing the
meaning of the quantified statement.

The order of nested existential quantifiers
in a statement without other quantifiers can
be changed without changing the meaning
of the quantified statement.

Common Quantifier Reversal:
V. W.g(x,y) @W. W.q(x,y)
X Dgry) @3 3glry)

Assume P(X,y) is (Xy = yX).
Translate the following statement into English.
Vx Vy P(X,y) domain: real numbers

Solution:

For all real numbers X, for all real numbers v,
Xy = yX.

Assume P(X,y) is (xy = 6).
Translate the following statement into English.
dx Iy P(x,y) domain: integers

Solution:

There is an integer x for which there is an integer
y that xy = 6.




The order of nested existential and

universal quantifiers in a statement is
important.

- dxVy and v x3dy are not equivalent!

- dxVy P(x,vy)
— P(x,y) = (x+y == 0) is false

- Vvx3dy P(x,y)
— P(x,y) = (x+y == 0) is true

Assume P(x,y)is (x +vy = 10).

Yx Ay P(x,y) domain: real numbers
For all real numbers x there is a real number vy such that x + vy
= 10.

True (y=10-x)

dy ¥x P(x,y) domain: real numbers
There is a real number y such that for all real numbers x, x + vy
= 10.
False

So, ¥x dy P(x,y) and dy ¥x P(x,y) are not logically equivalent.

Assume P(x,y,2)is (X +vy =2).

Vx Yy dz P(x,y.2) domain: real numbers
For all real numbers x and y there is a real number z such that
X+y=2
True
dz ¥x Yy P(X,y.Z) domain: real numbers
There is a real number z such that for all real numbers x and y
X+y=2z
False

So, Vx Vy dz P(x,y.z) and Jdz Vx Vy P(x.y.z) are not logically
equivalent




Nested quantifiers (example)

Translate the following statement into a logical expression.
“The sum of two positive integers is always positive.”

Solution:
[1 Translate it to a logical expression
“For all integers x, vy, if x and y are positive, then x+vy is

positive.”
Yx ¥y (x=>0)a(y>0) —=(x+y>=>0)) domain: integers
¥Yx Vy (x+y=>0) domain: positive integers

“Every real number except zero has a multiplicative inverse.”

A multiplicative inverse of a real number x is a real number y such that ]
Xy =1.

Solution:
[1 Translate it to a logical expression

“For every real number x, if x 2 0, then there is a real number
y such thatxy = 1.7

VX ((x=0)—= 3y (xy =1)) domain: real numbers

Statement | Truewhen... _______Falsewhen..

P(x,y) is true for every There is at least one pair
MV VECSY) pair x,y x,y for which P(x,y) is false
Vx3dy P(x,y) Forevery x, thereisay There is an x for which

for which P(x,y) is true P(x,y) is false for every y
dxVy P(x,y) Thereis an x for which For every x, there is a y for

P(x,y) is true for every y which P(x,y) is false
DEIve(xy) There is at least one pair P(x,y) is false for every pair

x,y for which P(x,y) is true x,y




Negating nested quantifiers
(example)

What is the negation of the following statement?
Vx dy (x = -y)

Solution:

- Vx P(x) P(x) =3y (x=-y)

dx =P(x)

x (= 3y x=-y))

3x (Vy =(x = -y))

dx Vy (X = -y)

Rewrite these statements so that the negations
only appear within the predicates

o) —dydx P(x,y)

@ Vy—dx P(x,y)
@ VyVx—P(xy)

o) —Vx3dy P(x,y)

ol)

@ dx—dy P(x,y)
@ IxVy —P(x,y)

—dy (Q(y) A Vx =R(x,y))
@ Vy—(Qly) A Vx—=R(x,y))
@ Vy (—=Qly) v =(Vx —=R(x,y)))
@ Vy (—=Q(y) v Ix R(x,y))

—(Vx3dy P(x,y) v Vx3dy Q(x,y))
—Vxdy P(x,y) A =Vx3dy Q(x,y)
dx—3y P(x,y) A Ix—dy Q(x,y)

dxVy =P(x,y) A IxVy —=Q(x,y)

© ¢ 0 O




Translating between English and
quantifiers

* The product of two negative integers is positive
— VxVYy ((x<0) A (y<0) = (xy > 0))
— Why conditional instead of and?

* The average of two positive integers is positive
— VxVy ((x>0) A (y>0) = ((x+y)/2 > 0))

* The difference of two negative integers is not
necessarily negative

— dxdy ((x<0) A (y<0) A (x-y=0))
— Why and instead of conditional?

* The absolute value of the sum of two integers does
not exceed the sum of the absolute values of these
integers
— VXVy (Ix+y| < [x] +]y])

Translating between English and
guantifiers

* IxVy (x+y =)
— There exists an additive identity for all real numbers
* VxVy (((x20) A (y<0)) = (x-y > 0))

— A non-negative number minus a negative number is
greater than zero

* dxdy (((x=0) A (y=0)) A (x-y > 0))

— The difference between two non-positive numbers is not
necessarily non-positive (i.e. can be positive)

* UxVy (((x#0) A (y#0)) €<= (xy # 0))

— The product of two non-zero numbers is non-zero if and
only if both factors are non-zero




Rules of Inference :
Simple arguments can be used as building blocks to construct more complicated
valid arguments. Certain simple arguments that have been established as valid are

very important in terms of their usage. These arguments are called Rules of

Definition

An argument in propositional logic is sequence of propositions. All but the
final proposition are called premises and the final proposition is called the
conclusion. An argument is valid if the truth of all its premises implies
that the conclusion is true.

An argument form in propositional logic is a sequence of compound
propositions involving propositional variables. An argument form is valid if
no matter which propositions are substituted for the propositional variables
in its premises, if the premises are all true, then the conclusion is true.

First Premise
Second Premise
Third Premise

Nth Premise
. Conclusion

Modus Ponens

IfPand P — Q are two premises, we can use Modus Ponens to derive Q.

Example

"If you have a password, then you can log on to facebook”, P — Q

"You have a password”, P

Therefore — "You can log on to facebook”




Modus Tollens

If P— @ and —(Q aretwo premises, we can use Modus Tollens to derive —P

P—Q
—~Q
e

Example
"If you have a password, then you can log on to facebook”, P — @
"You cannot log on to facebook”, —Q)

Therefore - "You do not have a password "

Conjunction

If P and Q are two premises, we can use Conjunction rule to derive P A Q .

P

Q
“PrQ

Example
Let P - "He studies very hard”
Let Q - "He is the best boy in the class”

Therefore — "He studies very hard and he is the best boy in the class”




TABILE 1 Rules of Inference.

Rule of Inference

Tautology

Name

P
S
. q

(pA(p—>gq)) > q

Modus ponens

s
=4
.. =p

(—g N (p — q)) — —p

Modus tollens

p:=>q
==K

W p—>r

(p—=>g)~n(g—>r) = (p—>r)

Hypothetical syllogism

pPNVq

(pNvVg)N—p)—>q

Disjunctive syllogism

p—>(pVvaqg)

Addition

(pnrAg) —> p

Simplification

(p)Al(g)) — (pAg)

Conjunction

(pvagIn(mpVvr)) —(qVvr)

Resolution

& »:Determine whether the argument is valid and whether the
conclusion must be true

e If vZ = 2 then (v2)? > (2)2. We know that +/2 = 2. Therefore,
(V2 =2=>(3)*= 1.

@ s the argument valid?

@ Does the conclusion must be true?

3 . (3 :
'\E?E—i“(ﬁ) 1\5)

3
'\.E}—
2

o
S2=—
4

The argument is valid as it is constructed using modus ponens
But one of the premises is false (p is false)
So,we cannot derive the conclusion

A valid argument can lead to an incorrect conclusion
if one of its premises is wrong/falsel




