
Structures1

Unions2

Classes3

Introduction to

Object Oriented Programming

Lecture 3

Structures

 Structure is a collection of variables referenced

under a common name.

 Sometimes, some logically related elements

need to be treated under one single unit.

 For instance, the elements that store student

information (e.g., name, class, marks and

grade) need to be processed together under

one roof.

Defining A Structure

struct tag-name

{

Member1 ;

Member2 ;

Member3 ;

} ;

 struct is a required keyword to define a structure.

 tag-name is the name that identifies the structure.

 member1, member2 and member3 are the members

of the structure.

Example

struct stdrecord

{

int class ;

char name[40] ;

float marks ;

} std ;

 std is structure variable of type stdrecord.

Referencing Structure Elements

 Once a structure has been defined, its members can be

accessed with the use of dot (.) operator.

Syntax:

structure-name.element-name ;

Example:

std.name = “Ahmed” ;

std. class = 2 ;

 The structure variable name followed by a period (.) and

the element name is the name of the specific structure

variable.

Structures In C++

 Structures in C++ differ from those in C in that members

can be functions.

 A special member function is the “constructor”, whose

name is the same as the structure. It is used to initialize

the object:

struct buffer {

buffer(){size=MAXBUF+1; A=B=0;}

char buf[MAXBUF+1];

int size, A, B;

}

Structures In C++

#include <iostream>

using namespace std;

#define MAXBUF 5

struct buffer {

buffer() {size=MAXBUF+1; A=B=0;}

char buf[MAXBUF+1];

int size, A, B;

};

void main()

{

buffer x;

cout<<x.A <<"\t"<<x.B <<"\t"<<x.size <<endl;

}

Structures In C++

 The definition (body) of a member function can be

included in the structure's declaration, or may appear

later. If so, use the name resolution operator (::)

void buffer::enter(int p) {

size = p;

A = p;

B = p;

}

Structures In C++

#include <iostream>

using namespace std;

#define MAXBUF 5

struct buffer {

buffer() {size=MAXBUF+1; A=B=0;}

char buf[MAXBUF+1];

int size, A, B;

void inc(int i) { size+=i;}

void enter(int p);

};

void buffer::enter(int p) {

size=p; A=p; B=p;

}

void main()

{

buffer x;

cout<<x.A <<"\t"<< x.B <<"\t"<< x.size <<endl;

x.enter(100);

cout<<x.A <<"\t"<< x.B <<"\t"<< x.size <<endl;

x.inc(100);

cout<<x.A <<"\t"<< x.B <<"\t"<< x.size <<endl;

}

Unions

 A union is a memory location that is shared by several

variables that are of different types. The union definition

is similar to that of a structure:

union union-name

{

Member1 ;

Member2 ;

Member3 ;

} ;

Example

union asciicode

{

int i ;

char ch ;

} Ascii ;

 Ascii is union variable of type asciicode.

 When a union is declared, the compiler automatically

creates a variable large enough to hold the largest

variable type in the union.

Unions

 In example asciicode, compiler will reserve 2-bytes

since (i) occupies 2 bytes.

 The figure below shows how (i) and (ch) share the same

address.

 In C++ union are used frequently when type conversion

are necessary.

Ex: Ascii.ch = ‘A’ ; cout << Ascii.i ; output = 65

Byte 0 Byte 1

ch

i

Abstract Data Types

 A data type consist of a collection of values together with a

set of basic operations defined on these values.

 A data type is called an abstract data type (ADT) if the

programmers who use the type do not have access to the

details of how the values and operations are implemented

Classes & Defining a Class

 A class is a data type whose variables are objects.

 An object is a variable that has member functions as well

as the ability to hold data values.

 The definition of a class should be a data type definition

that describes what kinds of values the variables can

hold and the operations on these values.

 These operations are carried out by and referred to as

member functions.

Defining a Class in C++

 Classes in C++ evolve from the C notion of structures

(referred to as records in Pascal).

 The keyword struct intoduces the structure definition.

 Structures are data type aggregations built using

elements of other types. For example:

struct Time {

int hour; // 0-23

int minute; // 0-59

int second; // 0-59

};

Accessing Members of Structures

 Members of a structure(or class) are accessed using the

dot operator (.) and the arrow operator (>).

cout << mytime.hour;

cout << time_ptr->hour;

Problems with Structures

 It is possible to have uninitialized data.

 If a struct implementation is changed, all

programs that use it must be changed.

 There is no “interface” to insure that the

programmer uses the data type correctly

and to insure that the data remains “stable”.

Class Definitions

 Classes enable the programmer to model objects that

have attributes (represented as data members) and

behaviors or operations (represented as member

functions).

 Types containing data members and member functions

are defined in C++ using the keyword class.

Class Time

class Time {

public:

Time();

void setTime(int, int, int);

void printStandard();

private:

int hour ; // 0-23

int minute ; // 0-59

int second ; // 0-59

} ;

Class Member Access

 The public: and private: labels are called member access

specifiers.

 Any member identifier declared after member access

specifier public is accessible wherever the program has

access to the object.

 Any member identifier declared after member access

specifier private is accessible only to member functions of

the class.

 Member access specifiers are always followed by a

colon(:).

 Member access specifiers can appear multiple times and in

any order in the class definition.

 The default access specification is private.

Time Member Functions

 Time contains prototypes for three member functions

after the the public access specifier: Time, setTime,

and printStandard.

 These are referred to as the behaviors, services or

interface of the class.

 These functions are used by clients of the class to

manipulate the data of the class.

Class Constructor

 A member function with the same name as the class is

called a constructor function for the class.

 A constructor is a special member function that initializes

the data members of a class object.

 The class constructor is called automatically when an

object of that class is created.

 Constructors can contain default arguments

 By providing default arguments to the constructor, even

if no arguments are provided in a constructor call, the

object is still initialized to a consistent state.

Default Constructor

 A programmer-supplied constructor that defaults all its

arguments(or explicitly requires no arguments) is called

a default constructor.

 Hence, a constructor that can be invoked with no

arguments is a default constructor.

 There can only be one default constructor per class.

Constructor with default args

class Time {

public:

Time(int = 0, int = 0, int =0);

void setTime(int, int, int);

void printStandard();

private:

int hour ; // 0-23

int minute ; // 0-59

int second ; // 0-59

} ;

Time::Time(int hr, int min, int sec)

{

setTime(hr, min, sec) ;

}

setTime() & printStandard() Definition

void Time::setTime(int h, int m, int s)

{

hour = (h >= 0 && h < 12) ? h : h % 12 ;

minute = (m >= 0 && m < 60) ? m : m % 60 ;

second = (s >= 0 && s < 60) ? s : s % 60 ;

}

void Time::printStandard()

{

cout<<hour<<":"<< minute<<

":"<<second<<endl;

}

Time Data Members

 Three integer members appear after the private access

specifier: hour, minute, and second.

 Thus, these members are only accessible by member

functions of the class(and “friends” of the class).

