
1

Introduction to

Object Oriented Programming

Lecture 2

Function in C++

2

Size Of ?

#include <iostream.h>

void main ()

{

cout << "char size = " << sizeof(char) << " bytes \n";

cout << "short size = " << sizeof(short) << " bytes \n";

cout << "int size = " << sizeof(int) << " bytes \n";

cout << "long size = " << sizeof(long) << " bytes \n";

cout << "bool size = " << sizeof(bool) << " bytes \n";

cout << "float size = " << sizeof(float) << " bytes \n";

cout << "double size = " << sizeof(double) << " bytes \n";

cout << "long double size = " << sizeof(long double) << " bytes \n";

cout << "char* size = " << sizeof(char*) << " bytes \n";

cout << "int* size = " << sizeof(int*) << " bytes \n";

}

3

Size Of ?

in VS C++

 char size = 1 bytes

 short size = 2 bytes

 int size = 4 bytes

 long size = 4 bytes

 bool size = 1 bytes

 float size = 4 bytes

 double size = 8 bytes

 long double size = 8 bytes

 char* size = 4 bytes

 int* size = 4 bytes

4

Function In C++

 A function is a named unit of a group of program

statements.

 This unit can be invoked from other parts of the program.

 A programmer can solve a simple problem in C++ with a

single function.

 Difficult and complex problems can be decomposed into

sub-problems, each of which can be either coded directly

or further decomposed.

 Decomposing difficult problems, until they are directly

code-able as single C++ functions,

 These functions are combined into other functions and

are ultimately used in main() to solve the original

problem.

5

Writing a Function

 You have decide on what the function will look

like:

 Return type

 Name

 Types of parameters (number of parameters)

 You have to write the body (the actual code).

6

Syntax

 In C++, a function must be defined before it can
be used any where in the program.

 The general function definition is as given below:

datatype function-name (parameter list)

{

function body ;

-

-

}

7

Syntax

 where datatype specifies the type of value the

function returns (e.g.: int, char, float, double, user-

defined).

 If no datatype is mentioned, the compiler assumes it

as default integer type.

 The parameter list is also known as the arguments or

signature of the function, which are the variables that

are sent to the function to work on.

 If the parameter list is empty, the compiler assumes

that the function does not take any arguments.

8

Function parameters

 The parameters are local variables inside the

body of the function.

 When the function is called they will have the

values passed in.

 The function gets a copy of the values passed

in (we will later see how to pass a reference to

a variable).

9

Sample Function

 int add2ints(int a, int b)

 {

return(a+b);

 }

10

Sample Function

int add2nums(int firstnum, int secondnum)

{

int sum;

sum = firstnum + secondnum;

firstnum = 0;

secondnum = 0;

return(sum);

}

11

Testing add2nums

void main()

{

int y,a,b;

cout << "Enter 2 numbers\n";

cin >> a >> b;

y = add2nums(a,b);

cout << "a is " << a << endl;

cout << "b is " << b << endl;

cout << "y is " << y << endl;

}

12

Using functions – Math Library functions

 C++ includes a library of Math functions

you can use.

 You have to know how to call these

functions before you can use them.

 You have to know what they return.

 You don’t have to know how they work!

13

double sqrt(double)

 When calling sqrt, we have to give it a

double.

 The sqrt function returns a double.

 We have to give it a double.

x = sqrt(y);

x = sqrt(100);

14

Table of square roots

int i;

for (i=1;i<10;i++)

cout << sqrt(i) << “\n”;

 But I thought we had to give sqrt() a

double?

 C++ does automatic type conversion for

you.

15

Telling the compiler about sqrt()

 How does the compiler know about sqrt ?

 You have to tell it:

#include <math.h>

16

Other Math Library Functions

ceil floor

cos sin tan

exp log log10 pow

fabs fmod

17

Local variables

 Parameters and variables declared inside

the definition of a function are local.

 They only exist inside the function body.

 Once the function returns, the variables no

longer exist!

That’s fine! We don’t need them anymore!

18

Global variables

 You can declare variables outside of any

function definition – these variables are

global variables.

 Any function can access/change global

variables.

19

Block Variables

 You can also declare variables that exist
only within the body of a compound
statement (a block):

{

int f;

…

…

}

20

Scope

 The scope of a variable is the portion of a

program where the variable has meaning

(where it exists).

 A global variable has global (unlimited)

scope.

 A local variable’s scope is restricted to the

function that declares the variable.

 A block variable’s scope is restricted to the

block in which the variable is declared.

21

Block Scope

int main() {

int y;

{

int a = y;

cout << a << endl;

}

cout << a << endl;

}

22

Function Prototypes

 A Function prototype can be used to tell

the compiler what a function looks like

 So that it can be called even though the

compiler has not yet seen the function

definition.

 A function prototype specifies the function

name, return type and parameter types.

23

Using a prototype

int counter();

int main() {

cout << counter() << endl;

cout << counter() << endl;

cout << counter() << endl;

}

int counter() {

int count = 0;

count++;

return(count);

}

24

Call-by-value vs. Call-by-reference

 So far we looked at functions that get a

copy of what the caller passed in.

 This is call-by-value, as the value is what gets

passed in (the value of a variable).

 We can also define functions that are

passed a reference to a variable.

 This is call-by-reference, the function can

change a callers variables directly.

25

References

 A reference variable is an alternative name

for a variable. A shortcut.

 A reference variable must be initialized to

reference another variable.

 Once the reference is initialized you can

treat it just like any other variable.

26

Call-by-value

#include <iostream.h>

int add2nums(int firstnum, int secondnum);//prototype

int main()

{

int y,a,b;

cout << "Enter 2 numbers\n";

cin >> a >> b;

y = add2nums(a,b);

cout << "a is " << a << endl;

cout << "b is " << b << endl;

cout << "y is " << y << endl;

return 0;

}

int add2nums(int firstnum, int secondnum)

{

int a = firstnum + secondnum;

return a;

};

27

Call-by-reference

#include <iostream.h>

int add2nums(int &firstnum, int &secondnum);//prototype

int main()

{

int y,a,b;

cout << "Enter 2 numbers\n";

cin >> a >> b;

y = add2nums(a,b);

cout << "a is " << a << endl;

cout << "b is " << b << endl;

cout << "y is " << y << endl;

return 0;

}

int add2nums(int &firstnum, int &secondnum)

{

int a = firstnum + secondnum;

firstnum=0 ; secondnum=0;

return a;

};

28

Inline Function

 One of the main objectives of using functions in a

program is to save some memory space, which

becomes appreciable when a function is likely to

be called many times. However, every time a

function is called, it takes a lot of extra time in

executing a series of instructions for task such as

jumping to the function, saving register, pushing

arguments into the stack, and returning to the

calling function. When a function is small, a

substantial percentage of execution time may be

spent in such overheads.

29

Inline Function

 C++ has a special solution to this problem. To eliminate

the cost of calls to small functions, C++ proposes a new

feature called inline function. An inline function is a

function that is expanded in line when it is invoked. That

is, the compiler replaces the function call with the

corresponding function codes. The inline function is

defined as follows:

inline function-header

{

function-body;

}

30

Inline Function

Example:

inline int cube(int a)

{

return (a*a*a);

}

 It is easy to make a function inline. All we need to
do is prefix the keyword inline to the function
definition. All inline functions must be defined
before they are used.

31

Inline Function

 There are few situations where an inline

function may not work:

 For a function returning values; if a return

statement exists.

 For a function not returning any values; if a

loop, switch or goto statement exists.

 If a function is recursive.

32

Function Templates

 we can also define function templates that could

be used to create a family of functions with

different argument types. The general format of a

function template is as follows:

template <class T>

return-type function-name(argument of type T)

{

// body of function with Type T

}

33

Function Templates

 The following example declares a swap()

function template that will swap two values of a

given type of data.

template <class T>

void swap(T &x, T &y)

{

T temp = x ;

x = y ;

y = temp ;

}

34

Function Templates

#include<iostream.h>

template<class T>

void swap(T &x, T &y)

{

T temp = x;

x = y;

y = temp;

}

void fun(int m, int n, float a, float b)

{

cout<<"\n m and n before swap : "<<m<<" " <<n;

swap(m, n);

cout<<"\n m and n after swap : "<<m<<" " <<n;

cout<<"\n a and b before swap : "<<a<<" " <<b;

swap(a, b);

cout<<"\n a and b after swap : "<<a<<" " <<b;

}

void main()

{

fun(100, 200, 11.22, 33.44);

}

35

Function Templates with Multiple Parameters

 We can use more than one generic data type in

the template statement, using a comma-

separated list as shown below:

template < class T1, class T2 >

return-type function-name(argument of types T1, T2,…)

{

// body of the function

}

36

Function Templates with Multiple Parameters

#include<iostream.h>

template < class T1, class T2 >

void display(T1 x, T2 y)

{

cout<<“x=“<<x<<endl;

cout<<“y=“<<y<<endl;

}

void main()

{

display(100, “ABC”);

display(11.22,’c’);

}

37

Function Overloading

 Function overloading is a concept where

several function declarations are specified

with a single and a same function name

within the same scope. Such functions are

said to be overloaded. C++ allows

functions to have the same name. Such

functions can only be distinguished by their

number and type of arguments.

38

Function Overloading

 Example

float divide(int a, int b) ;

float divide(float a, float b) ;

 The function divide(), which takes two

integer inputs, is different from the function

divide() which takes two float inputs.

39

What is the need for function overloading?

 Every object has characteristics and

associated behavior. An object may

behave differently with change in its

characteristics. Therefore, in order to

simulate real world objects in programming

environment, it is necessary to have

function overloading.

40

What is the need for function overloading?

For Example:

float AddNumber(float a, float b)

{

return a + b ;

}

int AddNumber(int a, int b)

{

return a + b ;

}

void main()

{

cout<<AddNumber(21, 36) ;

cout<<AddNumber(6.72, 2.22) ;

}

41

How to implement function overloading?

 The key to function overloading is the

function's argument list which is also

known as function signature. It is the

signature and not the function type that

enables function overloading.

 If two functions have the same number and

type of arguments in the same order, they

are said to have the same signature.

42

How to implement function overloading?

void abc(int a, float b)

void abc(int x, float y)

 Both these functions have the same

signature.

43

Sample for Function Overloading

 C++ allows you to overload a function

provided the function has the same name

but different signatures. The signature can

differ in the number of arguments or in the

type of arguments, or both. To overload a

function, all you need to do is, declare and

define all the functions with the same

name but different signatures.

44

Sample for Function Overloading

void prnsqr(int i);

void prnsqr(char c);

void prnsqr(float f);

void prnsqr(double d);

void prnsqr(int i)

{

cout<<"\n Integer "<< I <<"'s square is "<<I * i<<"\n";

}

void prnsqr(char c)

{

cout<<"\n Character "<< c <<" thus no square "<<"\n";

}

void prnsqr(float f)

{

cout<<"\n Float "<< f <<"'s square is "<<f*f<<"\n";

}

void prnsqr(double d)

{

cout<<"\n Double "<<d<<"'s square is "<<d*d<<"\n";

}

45

Sample for Function Overloading

 When a function, with same name, is declared more than

once in the program, the compiler will interpret the second

declaration as follows:

 If the signature of subsequent function matches the

previous function, then the second is treated as the re-

declaration of the first.

 If the signature of both the functions match exactly, but the

return type differs, then the second declaration is treated as

an erroneous re-declaration of the first and is flagged at

compile time as an error.

For example,

float square(float f);

double square(float x); //error

46

