
1

Introduction to
Object Oriented Programming

Lecture 1

Pointers, Dynamic Data, Reference Types

Dr. Shamal AL-Dohuki
saldohuk@uod.ac

13

C++ Data Types

structured

array struct union class

address

pointer reference

simple

integral enum

char short int long bool

floating

float double long double

3

Recall that . . .
char str [8];

str is the base address of the array. We say str
is a pointer because its value is an address. It is
a pointer constant because the value of str itself
cannot be changed by assignment. It “points” to
the memory location of a char.

str [0] [1] [2] [3] [4] [5] [6] [7]
‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

6000

4

Addresses in Memory
l when a variable is declared, enough memory to

hold a value of that type is allocated for it at an
unused memory location. This is the address of
the variable

int x;
float number;
char ch;

2000 2002 2006

x number ch

&y
In C++ you can get the address of a
variable with the “&” operator.

.
.
.

.
.
.

MEMORY
0
1
2
3
4
5

Address

&y means “the address of y”

y

int y;

y = 123;
cout<< &y; 123

5

Obtaining Memory Addresses

l the address of a non-array variable can be obtained
by using the address-of operator &

int x;
float number;
char ch;

cout << “Address of x is “ << &x << endl;

cout << “Address of number is “ << &number << endl;

cout << “Address of ch is “ << &ch << endl;

6

What is a pointer variable?

l A pointer variable is a variable whose value is the
address of a location in memory.

l to declare a pointer variable, you must specify the
type of value that the pointer will point to,for
example,

int* ptr; // ptr will hold the address of an int

char* q; // q will hold the address of a char

.
.
.

.
.
.

MEMORY
0
1
2
3
4
5

81345
81346
81347

Address

int x;
int *ptr;

x = 123;
ptr = &x;

x

ptr

123

3

7

Using a Pointer Variable

int x;
x = 12;

int* ptr;
ptr = &x;

NOTE: Because ptr holds the address of x,
we say that ptr “points to” x

2000

12

x

3000

2000

ptr

8

2000

12

x

3000

2000

ptr

int x;
x = 12;

int* ptr;
ptr = &x;

cout << *ptr;

NOTE: The value pointed to by ptr is denoted by *ptr

Unary operator * is the
indirection (deference) operator

9

int x;
x = 12;

int* ptr;
ptr = &x;

*ptr = 5; // changes the value
// at address ptr to 5

Using the Dereference Operator

2000

12 5

x

3000

2000

ptr

Assigning a value to a
dereferenced pointer

A pointer must have a value before you
can dereference it (follow the pointer).

int *x;
*x=3;

int foo;
int *x;
x = &foo;
*x=3;

10

char ch;
ch = ‘A’;

char* q;
q = &ch;

*q = ‘Z’;
char* p;
p = q; // the rhs has value 4000

// now p and q both point to ch

Another Example
4000

A Z

ch

5000 6000

4000 4000

q p

Pointers and Arrays
An array name is basically a const
pointer.
You can use the [] operator with a
pointer:
int *x;
int a[10];
x = &a[2];
for (int i=0;i<3;i++)

x[i]++;

x is “the address of a[2] ”

x[i] is the same as a[i+2]

Arrays and Pointers
An array name is actually a pointer to the 0th

element of the array
*x = 4; // assigns 0th element

x[0] x[1] x[2] x[3] x[4]

15 1084

Arrays and Pointers
Adding the integer value 3 to the base

address references the 3rd element of the
array

*(x+3) = 5; // these statements
x[3] = 5; // do the same thing

x[0] x[1] x[2] x[3] x[4]

15 108 54

Arrays and Pointers
Assigns the entire array to 0’s:
for(int *p=x, int cnt=0; cnt<5; cnt++)

*p++=0;

x[0] x[1] x[2] x[3] x[4]

15 1012 54

Arrays and Pointers
You can dynamically allocate an entire array:
int *p = new int[5];
for(int cnt=0; cnt<5; cnt++)

*(p+cnt)=cnt;

1 42 30

p

Pointer arithmetic
l Integer math operations can be used with

pointers.
l If you increment a pointer, it will be

increased by the size of whatever it points
to.

int a[5];

a[0] a[1] a[2] a[3] a[4]

int *ptr = a;

*ptr

*(ptr+2)
*(ptr+4)

printing an array
void print_array(int a[], int len) {

for (int i=0;i<len;i++)
cout << "[" << i << "] = "

<< a[i] << endl;
}

void print_array(int *a, int len) {
for (int i=0;i<len;i++)

cout << "[" << i << "] = "
<< *a++ << endl;

}

17

Program Data
l STATIC DATA: memory allocation exists

throughout execution of program
static long currentSeed;

l AUTOMATIC DATA: automatically created at
function entry, resides in activation frame of the
function, and is destroyed when returning from
function

l DYNAMIC DATA: explicitly allocated and
deallocated during program execution by C++
instructions written by programmer using
operators new and delete

18

Allocation of Memory

STATIC
ALLOCATION

Static allocation
is the allocation
of memory space
at compile time.

DYNAMIC
ALLOCATION

Dynamic
allocation is the
allocation of
memory space at
run time by using
operator new.

Some C++ Pointer Operations
Precedence
Higher -> Select member of class pointed to

Unary: ++ -- ! * new delete
Increment, Decrement, NOT, Dereference, Allocate, Deallocate

+ - Add Subtract

< <= > >= Relational operators

== != Tests for equality, inequality

Lower = Assignment

Operator new Syntax
new DataType

new DataType [IntExpression]

If memory is available, in an area called the heap (or
free store) new allocates the requested object or
array, and returns a pointer to (address of) the
memory allocated.

Otherwise, program terminates with error message.

The dynamically allocated object exists until the
delete operator destroys it.

16

The NULL Pointer

There is a pointer constant 0 called the “null
pointer” denoted by NULL in header file cstddef.

But NULL is not memory address 0.

NOTE: It is an error to dereference a pointer
whose value is NULL. Such an error may cause
your program to crash, or behave erratically. It is
the programmer’s job to check for this.

while (ptr != NULL) {
. . . // ok to use *ptr here

}

19

2000

ptr

Dynamically Allocated Data

char* ptr;

ptr = new char;

*ptr = ‘B’;

cout << *ptr;

20

Dynamically Allocated Data

char* ptr;

ptr = new char;

*ptr = ‘B’;

cout << *ptr;

NOTE: Dynamic data has no variable name

2000

ptr

21

Dynamically Allocated Data

char* ptr;

ptr = new char;

*ptr = ‘B’;

cout << *ptr;

NOTE: Dynamic data has no variable name

2000

ptr

‘B’

22

Dynamically Allocated Data

char* ptr;

ptr = new char;

*ptr = ‘B’;

cout << *ptr;

delete ptr;

2000

ptr

NOTE: delete
deallocates
the memory
pointed to
by ptr

?

Operator delete returns to the free store memory
which was previously allocated at run-time by
operator new.

The object or array currently pointed to by the
pointer is deallocated, and the pointer is
considered unassigned.

Using Operator delete

23

24

Dynamic Array Allocation

char *ptr; // ptr is a pointer variable that
// can hold the address of a char

ptr = new char[5];

// dynamically, during run time, allocates
// memory for a 5 character array
// and stores the base address into ptr

ptr

6000

6000

25

Dynamic Array Allocation
char *ptr ;

ptr = new char[5];

strcpy(ptr, “Bye”);

ptr[1] = ‘u’; // a pointer can be subscripted

cout << ptr[2] ;

ptr

6000

6000 ‘B’ ‘y’ ‘e’ ‘\0’
‘u’

Operator delete Syntax

delete Pointer

delete [] Pointer

If the value of the pointer is 0 there is no effect.

Otherwise, the object or array currently pointed
to by Pointer is deallocated, and the value of
Pointer is undefined. The memory is returned to
the free store.

Square brackets are used with delete to
deallocate a dynamically allocated array.

27

Dynamic Array Deallocation
char *ptr ;
ptr = new char[5];
strcpy(ptr, “Bye”);
ptr[1] = ‘u’;

delete ptr; // deallocates array pointed to by ptr
// ptr itself is not deallocated
// the value of ptr is undefined.

ptr

?

28

int* ptr = new int;
*ptr = 3;

ptr = new int; // changes value of ptr
*ptr = 4;

What happens here?

3
ptr

3
ptr

4

29

Inaccessible Object

An inaccessible object is an unnamed object that
was created by operator new and which a
programmer has left without a pointer to it.

int* ptr = new int;
*ptr = 8;
int* ptr2 = new int;
*ptr2 = -5;

How else can an object become inaccessible?

8
ptr

-5
ptr2

30

Making an Object Inaccessible

int* ptr = new int;
*ptr = 8;
int* ptr2 = new int;
*ptr2 = -5;

ptr = ptr2; // here the 8 becomes inaccessible

8
ptr

-5
ptr2

8
ptr

-5
ptr2

31

Memory Leak

A memory leak is the loss of available
memory space that occurs when dynamic
data is allocated but never deallocated.

31

Memory Leak
typedef int* intptr;
void main ()
{
intptr P, Q;
P = new int;*P = 1
Q = new int;*Q = 2;
cout << *P << ‘ ’ << *Q << endl;
*P = *Q + 3;
cout << *P << ‘ ’ << *Q << endl;
P = Q;
cout << *P << ‘ ’ << *Q << endl;
}

Memory leak!

31

Memory Leak

#include <iostream.h>
typedef int* intptr;
void main () {
intptr ptr1;
ptr1 = new int;
*ptr1 = 12345;
delete ptr1;
ptr1 = NULL;
ptr1 = new int;
cout << *ptr1 << endl;
}

#include <iostream.h>
typedef int* intptr;
void main () {
intptr ptr1, ptr2;
ptr1 = new int;
*ptr1 = 12345;
delete ptr1;
ptr1 = NULL;
ptr2 = new int;
ptr1 = new int;
cout << *ptr1 << endl;
}

32

l is a pointer that points to dynamic memory that
has been deallocated

int* ptr = new int;
*ptr = 8;
int* ptr2 = new int;
*ptr2 = -5;
ptr = ptr2;

A Dangling Pointer

8
ptr

-5
ptr2

FOR EXAMPLE,

33

int* ptr = new int;
*ptr = 8;
int* ptr2 = new int;
*ptr2 = -5;
ptr = ptr2;

delete ptr2;
// ptr is left dangling

ptr2 = NULL;

Leaving a Dangling Pointer

8
ptr

-5
ptr2

8
ptr

NULL

ptr2

const Pointers
You can use the keyword const for pointers before the type, after the type, or in
both places. For example, all of the following are legal declarations:
const int * pOne;
int * const pTwo;
const int * const pThree;
pOne is a pointer to a constant integer. The value that is pointed to can't be

changed.
pTwo is a constant pointer to an integer. The integer can be changed, but pTwo
can't point to anything else.
pThree is a constant pointer to a constant integer. The value that is pointed to
can't be changed, and pThree can't be changed to point to anything else.
The trick to keeping this straight is to look to the right of the keyword const to
find out what is being declared constant. If the type is to the right of the
keyword, it is the value that is constant. If the variable is to the right of the
keyword const, it is the pointer variable itself that is constant.
const int * p1; // the int pointed to is constant
int * const p2; // p2 is constant, it can't point to anything else

The End

	Slide Number 1
	Slide Number 2
	Recall that . . .
	Addresses in Memory
	&y
	Obtaining Memory Addresses
	What is a pointer variable?
	Slide Number 8
	Using a Pointer Variable
	Unary operator * is the indirection (deference) operator
	Using the Dereference Operator
	Assigning a value to a dereferenced pointer
	Another Example
	Pointers and Arrays
	Arrays and Pointers
	Arrays and Pointers
	Arrays and Pointers
	Arrays and Pointers
	Pointer arithmetic
	printing an array
	Program Data
	Allocation of Memory
	Some C++ Pointer Operations
	Operator new Syntax
	The NULL Pointer
	Dynamically Allocated Data
	Dynamically Allocated Data
	Dynamically Allocated Data
	Dynamically Allocated Data
	Using Operator delete
	Dynamic Array Allocation
	Dynamic Array Allocation
	Operator delete Syntax
	Dynamic Array Deallocation
	What happens here?
	Inaccessible Object
	Making an Object Inaccessible
	Memory Leak
	Memory Leak
	Memory Leak
	A Dangling Pointer
	Leaving a Dangling Pointer
	Slide Number 43
	Slide Number 44

