
Data Structures
APPLICATIONS OF STACKS

1

University of Duhok

College of Science

Department of Computer
Second Year

Avin J. Kovli

2022 - 2023

OUT-LINES:

• Applications of stacks.

• Mathematical expression.

APPLICATIONS OF STACKS:

• There are a number of applications of stacks; Stack is internally used
by compiler to:

₋ Implement recursive function.
₋ Mathematical expression (calculation of postfix expression).

• Mathematical expression; An expression is defined as the
number of operands or data items (digits) combined with several
operators.

• Types of notation for an expression:
₋ Infix notation.
₋ Prefix notation.
₋ Postfix notation.

MATHEMATICAL EXPRESSION:

• The infix notation is what we come across in our general mathematics,
where the operator is written in-between the operands.

A+B

• The same expression when written in prefix notation looks like:

+ A B

• As the operator ‘+’ is written before the operands A and B, this notation is
called prefix (pre means before).

• In the postfix notation the operator(s) are written after the operands, so it
is called the postfix notation (post means after).

A B +

EXPRESSION EVALUATION AND CONVERSION:

For example: A + B * C

• To calculate this expression for values 4, 3, 7 for A, B, C respectively we must
follow certain in order to have the right result :

• The answer is not correct; multiplication is to be done before the addition,
because multiplication has higher precedence over addition. This means that an
expression is calculated according to the operator’s precedence not the order as
they look like.

• Thus expression A + B * C can be interpreted as A + (B * C). Using this alternative
method we can convey to the computer that multiplication has higher
precedence over addition.

A + B * C = 4 + 3 * 7 = 7 * 7 = 49

THE POSTFIX NOTATION:

• The postfix notation is the way computer looks towards arithmetic
expression, any expression entered into the computer is first
converted into postfix notation, stored in stack and then calculated.

• Used for designing Arithmetic and Logical Unit (ALU) of the CPU.

• Rules to be applied.
₋ Now, the evaluation of the expression A+B*C, requires knowledge of which of

the two operations, + or * , is to be performed first. Applying the rules of
precedence.

₋ The following operators are written in descending order of their precedence:
1. Exponentiation(^).
2. Multiplication (*) and division (/).
3. Addition (+) and subtraction (-).

CONVERTING INFIX TO POSTFIX EXPRESSION

• Example 1: A + B * C

A + (B * C) Parentheses for emphasis

A + (B C *) Convert the multiplication

A (B C *) + Convert the addition

A B C * + Postfix form

CONVERTING INFIX TO POSTFIX EXPRESSION

• Example 2: (A + B) * C Infix form

(A B +) * C Convert the addition

(A B +) C * Convert the multiplication

A B + C * Postfix form

CONVERTING INFIX TO POSTFIX EXPRESSION

• Example 3: A * B + C / D Infix Form

(A * B) + (C / D) Parenthesized expression

(A B *) + (C / D) Convert Multiplication

(A B *) + (C D /) Convert Division

(A B *) (C D /)+ convert addition

A B * C D/ + Postfix form

CONVERTING INFIX TO PERFIX EXPRESSION

• Example 1: A * B + C / D Infix Form

(A * B) + (C / D) Parenthesized expression

(*A B) + (C / D) Convert Multiplication

(*A B) + (/ CD) Convert Division

+(*A B) (/ CD) convert addition

+*A B /CD Prefix form

ALGORITHM TO CONVERT INFIX TO POSTFIX

Suppose X is an arithmetic expression written in infix notation and Y is the
equivalent postfix notation.

1. Scan X from left to right and repeat Step 2 to 5 for each element of X until the
Stack is empty.

2. If an operand (digit) is encountered, add it to Y.

3. If a ‘(‘ is encountered, push it onto Stack.

4. If an operator is encountered ,then:
1. Repeatedly pop from Stack and add to Y each operator (on the top of Stack) which has the

same precedence as or higher precedence than operator.
2. Add operator to Stack.

5. If a ‘)’ is encountered ,then:
1. Repeatedly pop from Stack and add to Y each operator (on the top of Stack) until a ‘(‘ is

encountered.
2. Remove the ‘(‘ from the stack.

6. END

CONVERT INFIX TO POSTFIX EXPRESSION USING STACK:
EXAMPLE 1: X= A + (B*C)

symbol scanned Stack Postfix Description

1 start

2 A A

3 + + A

4 (+(A

5 B +(AB

6 * +(* AB

7 C +(* ABC

8) + ABC*

9) empty ABC*+ end

EXAMPLE 2: X = A + (B / C - (D * E ^ F) + G) * H

Symbol Scanned Stack Postfix

1 A A

2 + + A

3 (+ (A

4 B + (A B

5 / + (/ A B

6 C + (/ A B C

7 - + (- A B C /

8 (+ (- (A B C /

9 D + (- (A B C / D

10 * + (- (* A B C / D

EXAMPLE 2: X = A + (B / C - (D * E ^ F) + G) * H

Symbol Scanned Stack Postfix

11 E + (- (* A B C / D E

12 ^ + (- (* ^ A B C / D E

13 F + (- (* ^ A B C / D E F

14) + (- A B C / D E F ^ *

15 + + (+ A B C / D E F ^ * -

16 G + (+ A B C / D E F ^ * - G

17) + A B C / D E F ^ * - G +

18 * + * A B C / D E F ^ * - G +

19 H + * A B C / D E F ^ * - G + H

20 A B C / D E F ^ * - G + H * +

ALGORITHM FOR EVALUATING POSTFIX EXPRESSION
USING STACK:
Initialize a stack to be empty;

While there are more characters in the input string do

begin

symb = next input character,

if symb is an operand (DIGIT) then

push(stack, symb)

else

begin

op2 = pop(stack)

op1 = pop(stack)

value = result of applying symb to op1 and op2

push(stack, value)

end

end

result = pop(stack)

EXAMPLE : 2 4 + 8 5 - *

Symb Op1 Op2 Value stack

2 2

4 2,4

+ 2 4 6 6

8 2 4 6 6,8

5 2 4 6 6,8,5

- 8 5 3 6,3

* 6 3 18 18

EXAMPLE 2: 6 2 3 + – 3 8 2 / + * 2 $ 3 +

Symb Op1 Op2 Value stack

6 6

2 6,2

3 6,2,3

+ 2 3 5 6,5

- 6 5 1 1

3 6 5 1 1,3

8 6 5 1 1,3,8

2 6 5 1 1,3,8,2

/ 8 2 4 1,3,4

+ 3 4 7 1,7

* 1 7 7 7

2 1 7 7 7,2

$ 7 2 49 49

3 7 2 49 49,3

+ 49 3 52 52

Any questions?

18

