
 1 

Pointers 
 
What is a Pointer Variable? 
A pointer variable is a variable whose value is the address of a location in 
memory. A pointer has a variable name just like any other variable and also 
has a type that designates what kind of variables its contents refer to. A 
variable that is a pointer that can contain addresses of locations in memory 
containing values of type int, is of type ‘pointer to int’. 
 

Declaring Pointers 
The declaration for a pointer is similar to that of an ordinary variable, except 
that the pointer name has an asterisk in front of it to indicate that it’s a variable 
that is a pointer. For example, to declare a pointer pnumber of type int, you 
could use the following statement: 
 
int* pnumber; 
 
This declaration has been written with the asterisk close to the type name. If 
you want, you can also write it as: 
 
int *pnumber; 
 
The compiler won’t mind at all; however, the type of the variable pnumber is 
‘pointer to int’, which is often indicated by placing the asterisk close to the type 
name. You can mix declarations of ordinary variables and pointers in the 
same statement. For example: 
 
int* pnumber, number = 99; 
 
This declares the pointer pnumber of type ‘pointer to int’ as before, and also 
declares the variable number, of type int. On balance, it’s probably better to 
declare pointers separately from other variables. The following statements 
certainly look clearer and putting declarations on separate lines enables you 
to add comments for them individually, making for a program that is easier to 
read. 
 
int number = 99; // Declaration and initialization of int variable 
int* pnumber; // Declaration of variable of type pointer to int 
 
It’s a common convention in C++ to use variable names beginning with p to 
denote pointers. This makes it easier to see which variables in a program are 
pointers, which in turn can make a program easier to follow. 

 
 
 
 



 2 

The Address-Of Operator 
When a variable is declared, enough memory to hold a value of that type is 
allocated for it at an unused memory location. This is the address of the 
variable. 
 
Example: 
    short int x; float number; char ch; 
 
                       2000                                  2002                            2006 
 

 
 
 
                           x                                  number                             ch 

 
What you need is the address-of operator, &. This is a unary operator that 
obtains the address of a variable. 
It’s also called the reference operator. To set up the pointer that we have just 
discussed, you could write this assignment statement: 
 
pnumber = &number; // Store address of number in pnumber 
 
 
 

Using Pointers 
Taking the address of a variable and storing it in a pointer is all very well, but 
the really interesting aspect is how you can use it. Fundamental to using a 
pointer is accessing the data value in the variable to which a pointer points. 
This is done using the indirection operator, *. 
 
 

The Indirection Operator 
You use the indirection operator, *, with a pointer to access the contents of 
the variable that it points to. 
The name ‘indirection operator’ stems from the fact that the data is accessed 
indirectly.  
One aspect of this operator that can seem confusing is the fact that you now 
have several different uses for the same symbol, *. It is the multiply operator, 
it also serves as the indirection operator, and it is used in the declaration of a 
pointer. Each time you use *, the compiler is able to distinguish its meaning by 
the context. 
 
 
 
 
 
 
 
 

 



 3 

Example: 
int* ptr;    // ptr will hold the address of an int 
char* q;   // q will hold the address of a char 

 
 
 
 
 
Using a pointer variable: 
 
Example: 
 
 
 int x; 
 x = 12; 
 int* ptr; 
 ptr = &x; 
 
 
// ptr holds the address of x, i.e. ptr “points to” x 
 
 
 
Using the deference operator: 
 
Example(1): 
 int x; 
 x = 12; 
 int* ptr; 
 ptr = &x; 
 
 *ptr = 5; 
// Changes the value at address ptr to 5 
 
 
Example(2): 
 char ch; 
 ch = ‘A’; 
 
 char* q; 
 q = &ch; 
 
 *q = ‘Z’; 
 char* p;     
 p = q;        
// The rhs has value 4000  now p & q both point to ch 
 
 
 
 

12

ptr

x

2000

3000

2000

 

12

2000

ptr

x

2000

3000

5

 

A

4000

ch

q p

5000 6000

4000

Z

4000

 



 4 

Assignment: 
 
 Run the following code then check the results: 
 
#include<iostream> 
using namespace std; 
int main() 
{ 
 int x=3; 
 int* ptr1; 
 int* ptr2; 
 cout<<endl<<&x<<endl;    //  Address of X 
 ptr1=&x; 
 x+=10; 
 cout<<endl<<x<<endl; 
 *ptr1=x*2; 
 cout<<endl<<x<<endl; 
 cout<<endl<<ptr1<<endl;  // Contents of pointer ptr1 
 cout<<endl<<&ptr1<<endl;  // Address of ptr1 
 ptr2=ptr1; 
 cout<<endl<<ptr2<<endl;  // Contents of pointer ptr2 
 cout<<endl<<&ptr2<<endl;  // Address of ptr2 
 *ptr2=x+5; 
 cout<<endl<<x<<"\t"<<*ptr1<<"\t"<<*ptr2<<endl; 
 return 0; 
} 
 

file://///Address

